Projection Based Model Order Reduction for Multiphysical Problems

Modes, Load Vectors, Couplings

Hanna Baumgartl, Mike Feuchter, Martin Hanke

CADFEM Germany GmbH

CADFEM

Ansys / Apex CHANNEL PARTNER

Contents

• Modes

- Geometrical: Fourier, Legendre, Zernike...
- Thermal Examples: GSO, MOS
- Load Vectors
 - Conservative Terminals
 - Load Vector Terminals
- Couplings
 - Temperature and Heat Transfer for Induction Heating

Ansys / Apex CHANNEL PARTNER

Geometry: Circle edge, periodic interval $\phi \in [0, 2\pi]$

• Basis:
$$\left[\sqrt{1/2\pi}, \sqrt{1/\pi} \cdot \sin \varphi, \sqrt{1/\pi} \cdot \cos \varphi, \sqrt{1/\pi} \cdot \sin 2\varphi, \sqrt{1/\pi} \cdot \cos 2\varphi \ldots\right]$$

• Example: Force density in air gap of induction machine

Legendre

Geometry: Finite straight line $x \in [-1, 1]$

• Basis: Legendre Polynomia

 $P_0(x) = 1$ $P_1(x) = x$

 $P_2(x) = \frac{1}{2}(3x^2 - 1)$

 $P_3(x) = \frac{1}{2}(5x^3 - 3x)$

 $P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3)$ $P_5(x) = \frac{1}{8}(63x^5 - 70x^3 + 15x)$ $P_6(x) = \frac{1}{16}(231x^6 - 315x^4 + 105x^2 - 5)$

Example: Normal deformation of sliding rail of machine tool

© CADFEM

Time =4696969.697ns

Fourier + Legendre

Geometry: Cylindric Surface $\phi, z \in [0, 2\pi] \times [-l/2, l/2]$

- Basis: $[F_i(\varphi) \cdot P_j(z)]$
- Example: Force density in air gap of claw pole machine

Radial Polynomia + Fourier + Legendre

Geometry: Hollow Cylinder $r, \varphi, z \in [R_{in}, R_{out}] \times [0, 2\pi] \times [-l/2, l/2]$

- Basis: $[R_i(r) \cdot F_j(\varphi) \cdot P_k(z)]$
- Example: For rotating disk we take $F_j(\varphi) = 1$, combination of radial and axial polynomia projects Joule heat as axisymmetric onto hollow cylinder.

Projection Based Model Order Reduction for Multiphysical Problems | Modes, Load Vectors, Couplings

Zernike

Zemike_T_MOR_3Inp—Static Structural Verification (E5) Projection Based Model Order Reduction for Multiphysical Problems | Modes, Load Vectors, Couplings CADFEM

Euro

Laplace's Spherical Harmonics

Geometry: Sphere

Basis:

 $egin{aligned} Y^m_\ell(heta,arphi) &= Ne^{imarphi}P^m_\ell(\cos heta)\ P^m_\ell: [-1,1] o \mathbb{R} ext{ is an associated Legendre polynomial} \end{aligned}$

• Example: Expansion of acoustic irradiaton Mulit-Pole expansion

Thermal Mode Example

Modes from GSO of selected Transient Results

Projection Based Model Order Reduction for Multiphysical Problems | Modes, Load Vectors, Couplings

Thermal Mode Example

Modes from MOS of Transient Results

Load Vectors and State Space Reduction

Conservative System Model

How do conservative terminals behave?

$$u_1 \cdot A_1 + u_2 \cdot A_2 + u_3 \cdot A_3 = u_m \cdot A_m$$

$$w_1 \cdot u_1 + w_2 \cdot u_2 + w_3 \cdot u_3 = u_m$$

$$F_m = A_m \cdot p$$

$$F_1 = A_1 \cdot p = w_1 \cdot F_m$$

$$F_2 = A_2 \cdot p = w_2 \cdot F_m$$

$$F_3 = A_3 \cdot p = w_3 \cdot F_m$$

 $\mathbf{W}^{\mathrm{T}} \cdot \mathbf{u} = u_m$ $\mathbf{F} = \mathbf{W} \cdot F_m$

Input- and output matrices are mutually transposed for conservative systems

Reduction with Load Vectors

Modal Reduction		Theory		Krylov Reduction
In postprocessing of modal analysis: Append load vectors to files of modes Create state space model	<pre>/solu modcont,on mxpand,12,,,yes *do,i,1,3 sffu,pres,nfpress(1) sf,force_face,pres,0 solve sfdel,all,all *enddo *do,i,1,7 sffu,pres,nrpress(1) sf,rad_face,pres,0 solve sfdel,all,all *enddo /post1 remuite 0</pre>	Theory $C_{R} \cdot \hat{\theta} + K_{R} \cdot \hat{\theta} = V^{T}Q$ $\theta = V \cdot \hat{\theta}$ $E \cdot \dot{x} + A \cdot x = B \cdot u$ $y = C \cdot x$ With the conservative case: $C = B^{T}$ What is needed? • System matrices • Vectors for reduction • Load vectors	Outline Name ▼ IP Project* Im Model (£2, Im Model (£3, Im Model (\$3,	<pre>/com,Create System Matrices harfrq,1/2/3.141592653589793 wrfull,1 solve /com,Create Load Vectors harfrq,0 wrfull,1 bfe,FET_body,hgen,,1/5.64056e-9 ! 1 Watt solve harfrq,0 wrfull,1 *do,ie,1,emax bfe,ie,hgen,,evol(ie)*(ejvect(ie)**2 & mono tep;ie,hgen,,evol(ie)*(ejvect(ie)**2 & mono tep;ie,hgen,,evol(ie)*(ejvect(ie)**2 & mono tep;ie,hgen,,evol(ie)*(ejvect(ie)**2 & mono tep;ie,hgen,evol(ie)*(ejvect(ie)**2 & mono tep;ie,hgen,evol(ie)*(ejvect(</pre>
				MatrixA(sys), 302403 MatrixB(sys), MatrixB(sys).transpose())

Projection Based Model Order Reduction for Multiphysical Problems | Modes, Load Vectors, Couplings

 Apply excitation and radiation force patterns as adim_F6s load vectors to modal file .mode

 Export state space matrices using SPMWRITE, transfer to SML /solu

PM 6Poles1

in F0

in F6c

out_R0 CADFEM

out R6c out R6s

out R12c ut R12s

out R18c out R18s

Load Vectors, Transfer Matrices to SML, Convert to Causal

- Load vectors are applied as spatial pressure distributions
- Allow definition of input loads (force waves onto tooth faces) and output loads (surface modes)
- SPMWR creates State Space Model, cut last columns from input and first rows from output
- New in Ansys 2024: SML file is directly written: keyw, beta, 1 \$ spmwrite

Transient NVH Analysis

- Input frequency ramped to 900 Hz Speed ramped to 18000 RPM
- PWM frequency 6000 Hz
- Id and Iq are functions of ٠
- ECE.pos and currents •
- 3DTAB finds force wave coefficients •
- Causal ROM transfers to surface waves •
- Sum of surface velocities times impedance • gives sound pressure

Live Example:

PCB Thermal MOR with Load Vectors

Simple Induction Heating Example

Field and Reduced Simulation IEAT2 HEAT3 HEAT4 HEAT5 HEAT6 HEAT7 HEAT8 Inp ele Inp ele 115' 51 HEATS HEATS HEAT10 HEAT11 HEAT12 EAT 1 EuroSimE .079275 .C.36037 .230.00 .7767.00 1.10330 1.68711 IEAT2 IEAT2 IEAT25 CADFEM Ansys / APEX CHANNEL PARTNER

Simple 2D Induction Heating Example

Flux Lines and Current Density

Transient Temperature Distribution

Field Coupling

- **Static** interaction: from actual temperature distribution the actual heat generation is produced
- Nonlinear: BH-curve, temperature dependent

- **Transient** behaviour: last time step is start for next
- Linear: PDE sytem with constant coefficients

Projection Based Model Order Reduction for Multiphysical Problems | Modes, Load Vectors, Couplings

System Coupling

- **Static** interaction: from actual temperature coefficients, inductor position and current, the heat generation coefficients are found
- Nonlinear: outputs are found from response surface calculation of inputs
- optiSLang creates Metamodel of Optimal Prognosis

- Transient behaviour: state space model
- Linear: matrices A, B, C describe equation of motion
- MORIA creates the ROM for TwinBuilder based on thermal system matrices

Projection Based Model Order Reduction for Multiphysical Problems | Modes, Load Vectors, Couplings

Temperature Distribution Projected onto Basis

TEMP-Coefficients vs. Time

System Simulation in Twin Builder

- Task:
- Compare TEMP and HEAT coefficients to those generated by coupled field simulation

Reduced TEMP and HEAT Comparison

TEMP Coefficients

HEAT Coefficients

Summary

- Modes for all physical domains
- Modes for equation of motion
- Modes for coupling
- Modes as load vectors for ROM generation
- Modes as DOF in system simulation