Projection Based Model Order Reduction for Multiphysical Problems

Short Course Part 2 - I | Vector

 Spaces and Subspace GenerationHanna Baumgartl, Mike Feuchter, Martin Hanke
CADFEM Germany GmbH

CADFEm

Copyright

Seminarunterlagen der CADFEM Group

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der Schranken des Urheberrechtsgesetzes ist ohne vorherige Zustimmung des Rechteinhabers unzulässig. Zur Nutzung des Werks sind ausschließlich die Personen berechtigt, die im mit dem Rechteinhaber über die Nutzung des Werks geschlossenen Vertrag namentlich definiert sind. Diese Nutzer haben ein einfaches, nicht übertragbares Recht, zeitlich befristet das Werk ausschließlich zum Zwecke der persönlichen Fortbildung zu nutzen. Jede weitergehende Nutzung, insbesondere die Weitergabe des Werks oder von Teilen davon (z.B. von Screenshots) an Dritte, einschließlich Kollegen, bedarf der vorherigen Zustimmung des Rechteinhabers.

Training Documents of CADFEM Group

The work including all its parts is protected by copyright. Any exploitation beyond the limits of the copyright law is not permitted without the prior consent of the copyright holder. Only those persons are entitled to use the work who are defined by name in the contract concluded with the rights holder concerning the use of the work. These users have a simple, nontransferable right to use the work for a limited period of time exclusively for the purpose of personal training. Any further use, in particular the transfer of the work or parts thereof (e.g. screenshots) to third parties, including colleagues, requires the prior consent of the copyright holder.

Image \& Video Rights

Cover and intermediate slides: Adobe Stock Unless otherwise stated, the image and video rights in this presentation are held by CADFEM Group.

Agenda

Discrete Fourier Transformation

Discrete Fourier Transformation and Vector Space

Link to Model Order Reduction

How to find a good Subspace

How to find a good Subspace

Modal Analysis

How to find a good Subspace

CADFEm
Krylov Subspace - Implicit Krylov Subspace
Moment Matching

How to find a good Subspace
-FULL
Based on Simulation Results
How to find a good Subspace

Gram Schmidt Orthogonalization

How to find a good Subspace

Discrete Fourier Transformation

...is some kind of model order reduction

Discrete Fourier Transformation

Starting point

- Continuous series $y(x) \in \mathbb{R}^{\infty}$ \rightarrow Infinite number of points

Discrete Fourier Transformation

Discretization

Starting point

- Continuous series $y(x) \in \mathbb{R}^{\infty}$
\rightarrow Infinite number of points

Discretized

- $\mathbf{y}=\left\{y_{0}, \ldots, y_{\mathrm{N}-1}\right\} y \in \mathbb{R}^{N}$
- N Number of timepoints

\rightarrow From infinite to N ©

Discrete Fourier Transformation

Discrete Fourier Transformation

Fourier Coefficients

- $\hat{y}_{k}=\sum_{j=0}^{N-i} \mathrm{e}^{-2 \pi \mathrm{i} \frac{\mathrm{i}}{N}} y_{j}$
- for $k=0, \ldots N-1$

In Matrix Notation

- $\hat{\mathbf{y}}=\boldsymbol{\Phi}^{\mathrm{T}} \mathbf{y}$
- with $\boldsymbol{\Phi}[j, k]=\mathrm{e}^{-2 \pi \frac{j}{\mathrm{j}} \frac{k}{N}}$

Discrete Fourier Transformation

Inverse Discrete

Fourier Transformation

- $y_{k}=\frac{1}{N} \sum_{j=0}^{N-i} \mathrm{e}^{2 \pi \mathrm{i} \frac{j k}{N}} \hat{y}_{j}$
- for $k=0, \ldots N-1$

In Matrix Notation

- $\mathbf{y}=\left[\boldsymbol{\Phi}^{\mathrm{T}}\right]^{-1} \hat{\mathbf{y}}$
- with $\boldsymbol{\Phi}[j, k]=\mathrm{e}^{-2 \pi \mathrm{i} \frac{j k}{N}}$

Discrete Fourier Transformation

Link to model order reduction?

Discretized signal

- $y=\left\{y_{0}, \ldots, y_{N-1}\right\} y \in \mathbb{R}^{N}$, Order N

Representation by DFT

- $\hat{y}_{k}=\sum_{j=0}^{N-i} \mathrm{e}^{-2 \pi \frac{\mathrm{i} k}{N}} y_{j}, \hat{y} \in \mathbb{R}^{N}$, Order N
- for $k=0, \ldots N-1$

The same data is represented

- ...but in different coordinates
- They can be interpretated in a different way

Let's call \hat{y} generalized coordinates

Discrete Fourier Transformation
...is some kind of model order reduction

Reduce Dimension

- By taking less Fourier coefficients
- Error is introduced

Vector Space

EuroSime

CADFEm

Ansys
CHANNEL PARTNER

Vector Space V

Vector a

Mathematician

- A vector in \mathbb{R}^{2}

Vector Space V

Basis of Vector Space

Basis B

- ... of a vector space \mathbf{V} with basis vectors \mathbf{b}_{1} to \mathbf{b}_{m}
- $\mathbf{B}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right] \in \mathbb{R}^{m}$
- m is the dimension of the vector space

Those basis vectors must be linear independent

- Each vector can be represented as a linear combination of basis vectors and this representation is unique
- Euclidian basis \mathbb{R}^{m} (also called standard, natural or canonical basis)
- $\mathbf{b}_{1}=\left\{\begin{array}{l}1 \\ 0\end{array}\right\}, \mathbf{b}_{2}=\left\{\begin{array}{l}0 \\ 1\end{array}\right\}$
- $\mathbf{B}_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\mathbf{I}$

Vector Space V
Basis of Vector Space
FEM

- "1" at one node, all others are 0
- $\in \mathbb{R}^{N}$
- N is the number of dofs

Vector Space V

Coordinates of a vector

Vector a

- ... with its coordinates a_{1} to a_{N} with respect to basis \mathbf{B}_{1}
$\cdot \mathbf{a}=\left\{a_{1}, \ldots, a_{N}\right\} \quad \in \mathbb{R}^{N}$
- E.g. $\mathbf{a}=\left\{\begin{array}{l}2 \\ 1\end{array}\right\}$
- $2\left\{\begin{array}{l}1 \\ 0\end{array}\right\}+1\left\{\begin{array}{l}0 \\ 1\end{array}\right\}=\mathbf{B}_{1} \mathbf{a}=\left\{\begin{array}{l}2 \\ 1\end{array}\right\}$

Each vector can be represented

- ...as a linear combination of basis vectors
- and this representation is unique

In reduced order modeling

- Ba is called Expansion

Vector Space V

Coordinates of a vector

Vector Space V

The basis is not unique!

Different basis

-E.g. $\mathbf{b}_{3}=\left\{\begin{array}{c}\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2}\end{array}\right\}, \mathbf{b}_{4}=\left\{\begin{array}{c}\frac{-\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2}\end{array}\right\}$
$\cdot \mathbf{B}_{2}=\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{-\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right]$
-spans the same vector space

Vector

$\cdot \ldots$ with its coordinates \hat{a}_{1} to \hat{a}_{N} with respect to basis \mathbf{B}_{2}

- $\widehat{a}=\left\{\begin{array}{c}2.12 \\ -0.71\end{array}\right\}$
$\cdot 2.12\left\{\begin{array}{l}\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2}\end{array}\right\}+-0.71\left\{\begin{array}{c}-\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2}\end{array}\right\}=\mathbf{B}_{2} \widehat{\boldsymbol{a}}$

Vector Space V

The basis is not unique!
 $\int_{0.041667 \text { Min }}^{0.041667 \text { Max }}$

Vector Space V

The basis is not unique!

Vector Space V

Truncated Basis

One can truncate the basis by neglecting some basis vectors

- $\mathbf{B}_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
- E.g. $\mathbf{B}_{1_{1}}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ or $\mathbf{B}_{1_{2}}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

The truncated basis spans a subspace of \mathbf{V}

Vector Space V

Truncated Basis

Vector Space V

Truncated Basis

Error due to truncated basis

Vector Space V

Scalar product / Inner Product

Scalar Product

- Mathematical relationship that assigns a scalar to two vectors
- Often denoted as by $\langle\mathbf{a}, \mathbf{c}\rangle$
- $\langle\mathbf{a}, \mathbf{c}\rangle=\mathbf{a}^{\mathrm{T}} \mathbf{c}=$ $\sum_{j=1}^{N} a_{j} c_{j}=a_{1} c_{1}+\cdots+a_{N} c_{N}$
- E.g. $\mathbf{a}=\left\{\begin{array}{l}2 \\ 1\end{array}\right\}, \mathbf{c}=\left\{\begin{array}{l}0 \\ 1\end{array}\right\}$

- $\mathbf{a}^{\mathrm{T}} \mathbf{c}=2 \cdot 0+1 \cdot 1=1$

Vector Space V

Scalar product / Inner Product

Geometric interpretation in \mathbb{R}^{2}

- $\mathbf{a}^{\mathrm{T}} \mathbf{c}=\|\mathbf{a}\|\|\mathbf{c}\| \cos (\phi)$
- $\phi=\arccos \left(\frac{\mathbf{a}^{\mathrm{T}} \mathbf{c}}{\|\mathbf{a}\|\|\mathbf{c}\|}\right)$
- E.g. $\mathbf{a}=\left\{\begin{array}{l}2 \\ 1\end{array}\right\}, \mathbf{c}=\left\{\begin{array}{l}0 \\ 1\end{array}\right\}$
- $\phi=\arccos \left(\frac{2 \cdot 0+1 \cdot 1}{\sqrt{5} \cdot 1}\right)=63^{\circ}$

Vector Space V

Orthogonality

Two vectors are orthogonal if the scalar product is 0

- In \mathbb{R}^{2} the angle is 90°
- E.g. $\mathbf{a}=\left\{\begin{array}{l}2 \\ 0\end{array}\right\}, \mathbf{c}=\left\{\begin{array}{l}0 \\ 1\end{array}\right\}$
- $\mathbf{a}^{\mathrm{T}} \mathbf{c}=2 \cdot 0+0 \cdot 1=0$

Vector Space V

Orthogonal Basis

Orthogonal basis

- The scalar product is 0 for $\mathbf{b}_{i}^{T} \mathbf{b}_{j}$ with $i \neq j$
$\bullet=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 \cdot 1+0 \cdot 0 & 1 \cdot 0+0 \cdot 0 \\ 0 \cdot 1+1 \cdot 0 & 0 \cdot 0+1 \cdot 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$\mathbf{B}_{2}^{T} \mathbf{B}_{2}$

-

Vector Space V

Orthogonal Projection

```
Given vector
```

$\cdot \mathbf{a}=\left\{\begin{array}{l}2 \\ 1\end{array}\right\}$

w.r.t to basis \mathbf{B}_{1}

- $\mathbf{B}_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
- $\mathbf{B}_{1} \mathbf{a}=2\left\{\begin{array}{l}1 \\ 0\end{array}\right\}+1\left\{\begin{array}{l}0 \\ 1\end{array}\right\}$

Projection onto truncated basis $\mathbf{B}_{1_{1}}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
$\cdot \hat{a}_{1}=\mathbf{B}_{1_{1}}^{\mathrm{T}} \mathbf{a}=\left[\begin{array}{ll}1 & 0\end{array}\right]\left\{\begin{array}{l}2 \\ 1\end{array}\right\}=2$

Projection onto truncated basis $\mathrm{B}_{1_{2}}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
$\cdot \hat{a}_{2}=\mathbf{B}_{1_{2}}^{\mathrm{T}} \mathbf{a}=\left[\begin{array}{ll}0 & 1\end{array}\right]\left\{\begin{array}{l}2 \\ 1\end{array}\right\}=1$

Vector Space V

Change of Basis

Change of basis of vector a

- $\mathbf{a}=\left\{\begin{array}{l}2 \\ 1\end{array}\right\}$
- From $\mathbf{B}_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ to $\mathbf{B}_{\mathbf{2}}=\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{-\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right]$

Linear system of equations

- $\mathrm{B}_{1} \mathrm{a}=\mathrm{B}_{2}$ â

Solution

- $\hat{a}=B_{2}^{-1} B_{1} \mathbf{a}$

Vector Space V

Change of Basis - Why are orthogonal bases that nice?

Solution

- $\hat{\mathrm{a}}=\mathrm{B}_{2}^{-1} \mathrm{~B}_{1} \mathbf{a}$

Why are orthogonal bases that nice?

- $\mathbf{B}_{2}^{-1}=\mathbf{B}_{2}^{\mathrm{T}}$
- $\hat{a}=B_{2}^{\mathrm{T}} \mathbf{B}_{1} \mathrm{a}$
- $\hat{a}=\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{-\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left\{\begin{array}{l}2 \\ 1\end{array}\right\}=\left\{\begin{array}{l}2.12 \\ -.71\end{array}\right\}$

Vector Space V

Change of Basis - Projection

$$
\hat{\mathrm{a}}=\mathbf{B}_{2}^{\mathrm{T}} \mathbf{B}_{1} \mathrm{a}
$$

In reduced order modeling

- If not denoted differently, the basis \mathbf{B}_{1} is the Euclidian basis
- $\hat{\mathbf{a}}=\boldsymbol{\Phi}^{\mathrm{T}} \mathbf{a}$ is just called Projection
- The truncated basis is written as $\boldsymbol{\Phi}$, describing the subspace
- â are called generalized coordinates

Vector Space V

Norm

Norm

- Assigns a non-negative real number to an element of the vector space
- Often denoted as $\|\cdot\|$.
- Generalization of the intuitive notion of "length" in the physical world

Often the norm is defined by the scalar
product

- $\|\mathbf{a}\|=\sqrt{\mathbf{a}^{\mathrm{T}} \mathbf{a}}$
- E.g. $\mathbf{a}=\left\{\begin{array}{l}2 \\ 1\end{array}\right\}$
- $\|\mathrm{a}\|=\sqrt{2 \cdot 2+1 \cdot 1}=\sqrt{5}$
-,L2-Norm", Euclidian norm

Vector Space V

Normalization of Basis Vectors - Normalized to 1

57.422 Max 55.773 -54.123 - 52.474 -50.825 -49.175 -47.526 -45.877 44.227 42.578 Min

Vector Space V

Vector Space V

Engineers...

Discrete Fourier Transformation and Vector Space

EuroSime

CADFEM
/Ansys / channée Rapriner

Discrete Fourier Transformation

...is some kind of model order reduction

Discretized

- $\mathbf{y}=\left\{y_{0}, \ldots, y_{N-1}\right\} y \in$ \mathbb{R}^{N}
- N Number of timepoints
\rightarrow From infinite to N ()

Discrete Fourier Transformation

...is some kind of model order reduction

- Basis that we have intuitively assumed
- I

1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Discrete Fourier Transformation

...is some kind of model order reduction

Discrete Fourier Transformation
...is some kind of model order reduction

Discrete Fourier Transformation

- In matrix notation
- $\hat{\mathbf{y}}=\boldsymbol{\Phi}^{\mathrm{T}} \mathbf{y}$

Projection!

Discrete Fourier Transformation
...is some kind of model order reduction

Discrete Fourier Transformation
 Transformation

- In matrix notation
- $\hat{\mathbf{y}}=\boldsymbol{\Phi}^{\mathrm{T}} \mathbf{y}$

Projection!

- Change of basis
Φ

Discrete Fourier Transformation

Eurosime CADFEM

...is some kind of model order reduction

$$
\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}
$$

The basis is orthonormal
 ()

1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0														
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0														
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
0														
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
0														
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
0														
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0														
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	0													
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0														
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0														
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0														
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0														
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0														
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Discrete Fourier Transformation

...is some kind of model order reduction

Inverse Discrete
 Fourier Transformation

- In matrix notation
- $\mathbf{y}=\left[\boldsymbol{\Phi}^{\mathrm{T}}\right]^{-1} \hat{\mathbf{y}}$
- $\left[\boldsymbol{\Phi}^{\mathrm{T}}\right]^{-1}=\left[\boldsymbol{\Phi}^{\mathrm{T}}\right]^{\mathrm{T}}=\boldsymbol{\Phi}$
- $\mathbf{y}=\boldsymbol{\Phi} \hat{\mathbf{y}}$

Expansion!

Discrete Fourier Transformation

...is some kind of model order reduction

Possibility to reduce the
dimension

- by taking less Fourier coefficients

Projection

- to a truncated subspace

Error

- often measured by the L2-Norm of
 the difference

Link to Model Order Reduction

PCB Model

EuroSime

CADFEm

Discretization

PCB Model

Vector Space

- Vector space of dimension
- Exemplary base vectors

PCB Model

Describing Equations
$\mathbf{K u}=\mathbf{F}$, with external force vector \mathbf{F}

PCB Model

Solving

$$
\mathbf{K}^{-1} \mathbf{F}=\mathbf{u}
$$

PCB Model

Projection of Displacements

Project the displacements

- onto a smaller subspace of dimension $n \ll N$

$$
\mathbf{u}=\boldsymbol{\Phi}_{\mathbf{u}} \widehat{\mathbf{u}}+\mathbf{r}
$$

- As it is only an approximation, the residual \mathbf{r} is introduced

$$
\mathbf{K} \mathbf{u}=\mathbf{F}
$$

- $K \Phi_{\mathbf{u}}(\widehat{\mathbf{u}}+\mathbf{r})=\mathbf{F}-\mathbf{K} \Phi_{\mathbf{u}} \mathbf{r}$
- $\boldsymbol{K} \Phi_{\mathbf{u}} \widehat{\mathbf{u}}=\mathbf{F}-\mathbf{K} \Phi_{\mathbf{u}} \mathbf{r}$

$$
\mathbf{K} \Phi_{\mathbf{u}} \widehat{\mathbf{u}}=\mathbf{F}-\tilde{\mathbf{r}}
$$

PCB Model

Projection of Displacements

$$
\mathbf{K} \Phi_{\mathbf{u}} \widehat{\mathbf{u}}=\mathbf{F}-\tilde{\mathbf{r}}
$$

Galerkin Condition

$$
\mathbf{K} \Phi_{\mathrm{u}} \widehat{\mathrm{u}}=\mathbf{F}-\tilde{\mathbf{r}}
$$

Galerkin condition

- The residual $\tilde{\mathbf{r}}$ is kept orthogonal to the subspace $\boldsymbol{\Phi}_{\mathbf{u}}$

$$
\boldsymbol{\Phi}_{\mathbf{u}}^{\mathrm{T}} \tilde{\mathbf{r}}=\mathbf{0}
$$

- Multiply by $\boldsymbol{\Phi}_{\mathrm{u}}^{\mathrm{T}}$
- $\boldsymbol{\Phi}_{\mathbf{u}}^{T} \mathbf{K} \boldsymbol{\Phi}_{\mathbf{u}} \widehat{\mathbf{u}}=\boldsymbol{\Phi}_{\mathbf{u}}^{\mathrm{T}} \mathbf{F}-\boldsymbol{\Phi}_{\mathbf{u}}^{\mathrm{T}} \tilde{\mathbf{r}}$
- $\underbrace{\boldsymbol{\Phi}_{\mathbf{u}}^{\mathrm{T}} \mathbf{K} \boldsymbol{\Phi}_{\mathbf{u}} \widehat{\mathbf{u}}}_{\overparen{\mathbf{K}}}=\underbrace{\boldsymbol{\Phi}_{\mathbf{u}}^{\mathrm{T}} \mathbf{F}}_{\tilde{\mathbf{F}}}$

PCB Model

Reduced Order Model

- $\boldsymbol{\Phi}_{\mathbf{u}}^{\mathrm{T}} \mathbf{K} \boldsymbol{\Phi}_{\mathbf{u}} \widehat{\mathbf{u}}=\boldsymbol{\Phi}_{\mathbf{u}}^{\mathrm{T}} \mathbf{F}$

PCB Model

Reduced Order Model

$\cdot \underbrace{\boldsymbol{\Phi}_{\mathbf{u}}^{\mathrm{T}} \mathbf{K} \boldsymbol{\Phi}_{\mathbf{u}}}_{\overparen{\mathbf{K}}} \widehat{\mathbf{u}}=\underbrace{\boldsymbol{\Phi}_{\mathbf{u}}^{\mathrm{T}} \mathbf{F}}_{\widehat{\mathbf{F}}}$

I

Reduced Order Model

Generalized...

- stiffness matrix $\widehat{\mathbf{K}}$
- force vector $\hat{\mathbf{F}}$
- displacement vector \widehat{u}

PCB Model

Idea of Projection Based Model Order Reduction

https://www.facebook.com/examath/photos/a. 16610840
7455452/1180064439393172/?type=3

How to find a good Subspace

Based on System Matrices

- Modal Subspace
- Krylov Subspace

Based on Simulation Results

- Gram Schmidt Orthogonalization
- Proper Orthogonal Decomposition/ Principal Component Analysis/ Method of Snapshots

How to find a good Subspace

Modal Analysis

EuroSime

CADFEm
Ansys / chanelipx
HANNEL PARTNER

Modal Analysis

Eurosime CADFEII

"What the system wants to do" - Free Vibrations

Equation of motion

- $\mathbf{M u ̈}+\mathbf{C u}+\mathbf{K u}=\mathbf{F}_{\text {ext }}$
- Damping is neglected
- Independent of external force

$\rightarrow \mathrm{Mu}+\mathrm{Ku}=\mathbf{0}$

- Displacement vector $\mathbf{u} \in \mathbb{R}^{N}$
- Velocity vector
- Acceleration vector $\ddot{\mathbf{u}} \in \mathbb{R}^{N}$
- External Force
$\mathbf{F}_{\mathrm{ext}} \in \mathbb{R}^{N}$
- Mass Matrix
$\mathbf{M} \in \mathbb{R}^{N \times N}$
- Stiffness Matrix
$\mathbf{K} \in \mathbb{R}^{N \times N}$
- Damping Matrix

Modal Analysis

"What the system wants to do" - Free Vibrations

> Equation of motion
> - $\mathbf{M u ̈}+\mathbf{C} \mathbf{u}+\mathbf{K u}=\mathbf{F}_{\text {ext }}$
> - Damping is neglected
> - Independent of external force

$$
\mathbf{M} \ddot{\mathbf{u}}+\mathbf{K} \mathbf{u}=\mathbf{0}
$$

For a linear system, free
vibrations are harmonic

- $\mathbf{u}=\boldsymbol{\Phi}_{i} \cos \omega_{i} t$
- Decomposition of $i-1-$ DOF-Oscillators
- $i^{\text {-th }}$ modeshape $\quad \boldsymbol{\Phi}_{i}$
- $i^{\text {-th }}$ natural frequency ω_{i}
- Time t

Modal Analysis

"What the system wants to do" - Free Vibrations

$$
\mathbf{M} \ddot{\mathbf{u}}+\mathbf{K u}=\mathbf{0}
$$

- with $\ddot{\mathbf{u}}=-\omega^{2} \mathbf{u}$

$$
\left(-\omega^{2} \mathbf{M}+\mathbf{K}\right) \boldsymbol{\phi}_{i}=\mathbf{0}
$$

- This equation is satisfied if
- $\boldsymbol{\phi}_{i}=0$
- trivial, not of interest
- Determinant of $\left(-\omega^{2} \mathbf{M}+\mathbf{K}\right)$ is $\mathbf{0}$
(generalized) eigenvalue problem
- Outputs
- n mode shapes $\boldsymbol{\Phi}=\left[\begin{array}{lll}\boldsymbol{\Phi}_{1} & \ldots & \boldsymbol{\Phi}_{n}\end{array}\right]$
- n natural frequencies

$$
\boldsymbol{\omega}=\left\{\begin{array}{lll}
\omega_{1} & \ldots & \omega_{n}
\end{array}\right\}
$$

Modal Analysis

"What the system wants to do" - Free Vibrations
Mode 1, $f_{1}=3.1 \mathrm{kHz}$
Mode 2, $f_{2}=4.3 \mathrm{kHz}$
Mode 3, $f_{3}=7.3 \mathrm{kHz}$

Modal Analysis

"What the system wants to do" - Free Vibrations

Implemented in all commercial FE-Codes

Number of mode shapes?
-The natural frequencies are ordered, from low to high frequencies

- In general: Dimension of the vector space of the model
$\rightarrow \rightarrow$ The same vector space is spanned
-Rule of thumb:
-Consider mode shapes up to twice the excitation frequency
\rightarrow Modal Truncation

Properties of mode shapes

- Orthogonal basis
- System matrices (K and \mathbf{M}) are decoupled
- Modal Superposition
-With "Mass normalization"
- $\boldsymbol{\Phi}^{\mathrm{T}} \mathbf{M} \boldsymbol{\Phi}=\operatorname{diag}(1)$, scalar product
- $\boldsymbol{\Phi}^{\mathrm{T}} \mathbf{K} \boldsymbol{\Phi}=\operatorname{diag}\left(\omega^{2}\right)$

Modal Analysis

"What the system wants to do" - Free V

Drawbacks

- Small structures \rightarrow many modes
- Excitation is not considered
- Many inner modes
- Only for linear dynamics
- Commonly used for structural

How to find a good Subspace

Krylov Subspace - Implicit Moment Matching

Krylov Subspace

General definition of Krylov Subspace

- $\mathcal{K}=\mathcal{K}(\mathbf{A}, \mathbf{q})=\operatorname{span}\left\{\mathbf{q}, \mathbf{A q}, \ldots, \mathbf{A}^{m-1} \mathbf{q}\right\}$

Used in many algorithms

- Arnoldi (solution of eigenvalue problems)
- Lanczos (solution of eigenvalue problems)
- GMRES (approximate solution of systems of linear equations)
- QMR (approximate solution of systems of linear equations)
- . . -

Moment Matching

What is a Moment in this Context?

General transfer function

- in Laplace domain
- Fourier integral is a special case with $s=\mathrm{i} \omega$
- $\left(s^{2} \mathbf{M}-\mathbf{K}\right) \mathbf{u}=\mathbf{F}_{\mathrm{ext}}$

- $\underbrace{}_{\mathbf{K}_{\mathrm{eq}_{(s)}}^{\left(s^{2} \mathbf{M}-\mathbf{K}\right)}}{ }^{\mathbf{- 1}} \mathbf{F}_{\mathbf{e x t}}=\mathbf{u}$

Moment Matching

What is a Moment in this Context?

$$
\underbrace{\left(s^{2} \mathbf{M}-\mathbf{K}\right)}_{\mathbf{K}_{\mathrm{eq}}^{(s)}}{ }^{-1} \mathbf{F}_{\mathrm{ext}}=\mathbf{u}
$$

Taylor series

- around s_{0}^{2}
- $\mathbf{u}=\sum_{i} \mathbf{m}_{i}\left(s^{2}-s_{0}^{2}\right)^{i}$
- Hint: the i-th derivative in the Laplace
 domain is just $s^{i} \cdot f(s)$
- \mathbf{m}_{i} are called moments of the transfer function

Moment Matching

Explicit Moment Matching

$$
\mathbf{u}=\sum_{i} \mathbf{m}_{i}\left(s^{2}-s_{0}^{2}\right)^{i}
$$

Explicit calculation of moments

 is numerically unstable- $\mathbf{m}_{i}=\widetilde{\mathbf{M}}^{i} \tilde{\mathbf{F}}$
- $\widetilde{\mathbf{M}}^{i}=\left[-\mathbf{K}_{\text {eq }}^{\left(\mathbf{S}_{0}\right)}-\mathbf{M}\right]^{i}$
- $\widetilde{\mathbf{F}}=\mathbf{K}_{\text {eq }}^{\left(s_{0}\right)}{ }^{-1} \mathbf{F}_{\text {ext }}$

Moment Matching

Implicit Moment Matching

Explicit Moments

- $\mathbf{m}_{i}=\widetilde{\mathbf{M}}^{i} \tilde{\mathbf{F}}$
- $\widetilde{\mathbf{M}}^{i}=\left[-\mathbf{K}_{\mathrm{eq}}^{\left(\mathbf{S}_{0}\right)}-1 \mathbf{M}\right]^{i}$
- $\tilde{\mathbf{F}}=\mathbf{K}_{\mathrm{eq}}^{\left({\left(0_{0}\right)}^{-1}\right.} \mathbf{F}_{\text {ext }}$

Krylov subspace definition

- $\mathcal{K}=\mathcal{K}(\mathbf{A}, \mathbf{q})=\operatorname{span}\left\{\mathbf{q}, \mathbf{A q}, \ldots, \mathbf{A}^{m-1} \mathbf{q}\right\}$
- $\mathbf{A}=\widetilde{\mathbf{M}}$
- $\mathbf{q}=\tilde{\mathbf{F}}$

The moments lie in the Krylov Subspace!

- The first moment \mathbf{q} is just the solution at the expansion point

Moment Matching

Implicit Moment Matching - Comments

Moment Matching

Implicit Moment Matching - Comments

Implicit moment matching is not limited to structural dynamics

Expansion point should be set according to the frequency range of interest

It is possible to use multiple expansion points

There is no established rule how many vectors should be considered

Can be expanded to "parametric model order reduction" the Taylor expansion is then done also for the parameter

How to find a good Subspace

Based on Simulation Results

EuroSime

CADFEm

Methods to Determine Subspaces

Based on Simulation Results

Snapshot matrix

- Do a calculation for m timesteps and assemble the results of interest $\mathbf{y} \mathbb{R}^{N}$ in a $\mathbf{S}=\left[\mathbf{y}_{1}, \ldots \mathbf{y}_{n}\right] \in \mathbb{R}^{N \times m}$

The snapshots define the vector space of the solution - how to find an orthonormal basis?

How to find a good Subspace

Gram Schmidt Orthogonalization

CADFEm

Insys
CHANNEL PARTNER

Gram Schmidt Orthogonalization

Given

- m vectors \mathbf{v}_{i} in \mathbb{R}^{N}

Target

- m orthonormal vectors \mathbf{u}_{i} in \mathbb{R}^{N}

Algorithm			
$\cdot \mathbf{u}_{1}=\frac{\mathbf{v}_{1}}{\left\\|\mathbf{v}_{1}\right\\|}$	Normalization of vector \mathbf{v}_{1}		
- $\mathbf{u}_{2}^{\prime}=\mathbf{v}_{2}-\frac{\left\langle\mathbf{v}^{2}, \mathbf{v}^{\prime} \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} \mathbf{u}_{1}$	Orthogonalization of \mathbf{v}_{2}		
$\cdot \mathbf{u}_{2}=\frac{\mathbf{u}_{2}}{\left\\|\mathbf{u}^{\prime}\right\\|}$	Normalization of vector \mathbf{u}_{2}^{\prime}		
$\bullet \mathbf{u}_{3}^{\prime}=\mathbf{v}_{3}-\frac{\left\langle\mathbf{v}_{3}, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1} \mathbf{u}_{1}\right\rangle} \mathbf{u}_{1}-\frac{\left\langle\mathbf{v}_{3}, \mathbf{u}_{2}\right\rangle}{\left\langle\mathbf{u}_{2}, \mathbf{u}_{2}\right\rangle} \mathbf{u}_{2}$	Orthogonalization of \mathbf{v}_{3}		
$\cdot \mathbf{u}_{3}=\frac{\mathbf{u}_{3}^{\prime}}{\left\\|\mathbf{u}_{2}^{\prime}\right\\|}$	Normalization of vector \mathbf{u}_{3}^{\prime}		
$\cdot \mathbf{u}_{m}^{\prime}=\mathbf{v}_{m}-\sum_{i=1}^{n-1} \frac{\left\langle\mathbf{v}_{m}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i} \mathbf{u}_{\rangle}\right\rangle} \mathbf{u}_{i}$	Orthogonalization of $\mathbf{v}_{\boldsymbol{m}}$		
- $\mathbf{u}_{m}=\frac{\mathbf{u}_{m}^{\prime}}{\left\\|\mathbf{u}_{m}^{\prime}\right\\|}$	Normalization of vector \mathbf{u}_{m}^{\prime}		

https://upload.wikimedia.org/wikipedia/commons/e/ee/Gram-Schmidt_orthonormalization_process.gif

Gram Schmidt Orthogonalization

Gram Schmidt Orthogonalization

Applications

Find an orthonormal basis for given vectors

How to truncate the basis?

- Engineering Knowledge: Select appropriate snapshots to calculate the basis

Used in different numerical algorithms (e.g. for the calculation of Krylov subspaces)

How to find a good Subspace

Proper Orthogonal Decomposition

EuroSime

CADFEM
/nsys
CHANNEL PARTNER

Proper Orthogonal Decomposition

Target

Find the best linear subspace for the approximation of the data
$\mathbf{S}=\left[\mathbf{y}_{1}, \ldots \mathbf{y}_{n}\right] \in \mathbb{R}^{N \times m}$

```
Principal Component Analysis
Compute the eigenvalue decomposition of }\mathbf{Y}=\mp@subsup{\mathbf{SS}}{}{T}\quad\in\mp@subsup{\mathbb{R}}{}{N\timesN
->Sorted Eigenvalues }\boldsymbol{\lambda}={\mp@subsup{\lambda}{1}{},\ldots,\mp@subsup{\lambda}{N}{}}\mathrm{ and Eigenvectors }\boldsymbol{\Psi}=[\mp@subsup{\Psi}{1}{},\ldots,\mp@subsup{\Psi}{N}{}
Basisvectors }\mp@subsup{\boldsymbol{\Phi}}{i}{}=\mp@subsup{\boldsymbol{\Psi}}{i}{}\in\mp@subsup{\mathbb{R}}{}{N
```

```
Method of Snapshots
Compute the eigenvalue decomposition of }\quad\mathbf{Y}=\mp@subsup{\mathbf{S}}{}{T}\mathbf{S}\quad\in\mp@subsup{\mathbb{R}}{}{m\timesm
->Sorted Eigenvalues }\boldsymbol{\lambda}={\mp@subsup{\boldsymbol{\lambda}}{1}{},\ldots,\mp@subsup{\lambda}{N}{}}\mathrm{ and Eigenvectors }\boldsymbol{\Psi}=[\mp@subsup{\Psi}{1}{},\ldots,\mp@subsup{\Psi}{N}{}
Basisvectors }\mp@subsup{\boldsymbol{\Phi}}{i}{}=\mathbf{S}\mp@subsup{\Psi}{i}{}\in\mp@subsup{\mathbb{R}}{}{N
```

Best Linear Approximation
Take n basisvectors corresponding to the largest eigenvalues

Proper Orthogonal Decomposition

Use Cases

Principal Component Analysis

- Compute the eigenvalue decomposition of $\mathbf{Y}=\mathbf{S S}^{\mathrm{T}} \quad \in \mathbb{R}^{N \times N}$
- Efficient if length N of snapshot vectors (e.g. locations) is low compared to count m of snapshots (e.g. timesteps)
\rightarrow Measurement data
Method of Snapshots
-Compute the eigenvalue decomposition of $\mathbf{Y}=\mathbf{S}^{\mathrm{T}} \mathbf{S} \quad \in \mathbb{R}^{m \times m}$
- Efficient if count m of snapshots (e.g. timesteps) is low compared to length N of snapshot vectors (e.g. locations)
\rightarrow Simulation data

Summary

