Projection Based Model Order Reduction for Multiphysical Problems

Short Course Part 2 – I | Vector Spaces and Subspace Generation

Hanna Baumgartl, Mike Feuchter, Martin Hanke

CADFEM Germany GmbH

CADFEM

Ansys / APEX CHANNEL PARTNER

Copyright

Seminarunterlagen der CADFEM Group

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der Schranken des Urheberrechtsgesetzes ist ohne vorherige Zustimmung des Rechteinhabers unzulässig. Zur Nutzung des Werks sind ausschließlich die Personen berechtigt, die im mit dem Rechteinhaber über die Nutzung des Werks geschlossenen Vertrag namentlich definiert sind. Diese Nutzer haben ein einfaches, nicht übertragbares Recht, zeitlich befristet das Werk ausschließlich zum Zwecke der persönlichen Fortbildung zu nutzen. Jede weitergehende Nutzung, insbesondere die Weitergabe des Werks oder von Teilen davon (z.B. von Screenshots) an Dritte, einschließlich Kollegen, bedarf der vorherigen Zustimmung des Rechteinhabers.

Training Documents of CADFEM Group

The work including all its parts is protected by copyright. Any exploitation beyond the limits of the copyright law is not permitted without the prior consent of the copyright holder. Only those persons are entitled to use the work who are defined by name in the contract concluded with the rights holder concerning the use of the work. These users have a simple, non-transferable right to use the work for a limited period of time exclusively for the purpose of personal training. Any further use, in particular the transfer of the work or parts thereof (e.g. screenshots) to third parties, including colleagues, requires the prior consent of the copyright holder.

Image & Video Rights

Cover and intermediate slides: Adobe Stock

Unless otherwise stated, the image and video rights in this presentation are held by CADFEM Group.

© CADFEM

Agenda

...is some kind of model order reduction

Ansys / APEX CHANNEL PARTNER

CADFEM

Discretization

Fourier Coefficients

•
$$\hat{y}_k = \sum_{j=0}^{N-i} \mathrm{e}^{-2\pi \mathrm{i} \frac{jk}{N}} y_j$$

• for
$$k = 0, ..., N - 1$$

In Matrix Notation

•
$$\hat{\mathbf{y}} = \mathbf{\Phi}^{\mathrm{T}} \mathbf{y}$$

• with
$$\Phi[j,k] = e^{-2\pi i \frac{jk}{N}}$$

Link to model order reduction?

© CADFEM

... is some kind of model order reduction

0.009375

Vector a

© CADFEM

Basis of Vector Space

Basis B

- ... of a vector space **V** with basis vectors \mathbf{b}_1 to \mathbf{b}_m
- $\mathbf{B} = [\mathbf{b}_1, \dots, \mathbf{b}_m] \in \mathbb{R}^m$
- *m* is the dimension of the vector space

Those basis vectors must be linear independent

- Each vector can be represented as a linear combination of basis vectors and this representation is unique
- Euclidian basis \mathbb{R}^m (also called standard, natural or canonical basis)

•
$$\mathbf{b}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathbf{b}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

• $\mathbf{B}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}$

FEM

Basis of Vector Space

- $\in \mathbb{R}^N$
- *N* is the number of dofs

© CADFEM

Vector Space V

Coordinates of a vector

Vector a

- ... with its coordinates a_1 to a_N with respect to basis B_1
- $\mathbf{a} = \{a_1, \dots, a_N\} \in \mathbb{R}^N$ • E.g. $\mathbf{a} = \begin{bmatrix} 2\\ 1 \end{bmatrix}$

•
$$2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 1 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \mathbf{B}_1 \mathbf{a} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Each vector can be represented

- ...as a linear combination of basis vectors
- and this representation is unique

In reduced order modeling

• Ba is called Expansion

Coordinates of a vector

The basis is not unique!

The basis is not unique!

The basis is not unique!

Truncated Basis

Vector Space V

Truncated Basis

Vector Space V

Vector Space V Truncated Basis

Error due to truncated basis

© CADFEM

Scalar product / Inner Product

Scalar Product

- Mathematical relationship that assigns a scalar to two vectors
- Often denoted as by $\langle a,c\rangle$

•
$$\langle \mathbf{a}, \mathbf{c} \rangle = \mathbf{a}^{\mathrm{T}} \mathbf{c} =$$

 $\sum_{j=1}^{N} a_j c_j = a_1 c_1 + \dots + a_N c_N$

• E.g.
$$\mathbf{a} = \begin{cases} 2 \\ 1 \end{cases}, \ \mathbf{c} = \begin{cases} 0 \\ 1 \end{cases}$$

•
$$\mathbf{a}^{\mathrm{T}}\mathbf{c} = \mathbf{2} \cdot \mathbf{0} + \mathbf{1} \cdot \mathbf{1} = \mathbf{1}$$

Scalar product / Inner Product

© CADFEM

Vector Space V Orthogonality

Two vectors are orthogonal if the scalar product is 0

- In \mathbb{R}^2 the angle is 90°
- E.g. $\mathbf{a} = \begin{cases} 2 \\ 0 \end{cases}$, $\mathbf{c} = \begin{cases} 0 \\ 1 \end{cases}$ $\mathbf{a}^{\mathrm{T}}\mathbf{c} = 2 \cdot 0 + \mathbf{0} \cdot 1 = \mathbf{0}$

Orthogonal Basis

Orthogonal basis

• The scalar product is 0 for $\mathbf{b}_i^{\mathrm{T}} \mathbf{b}_j$ with $i \neq j$

$\mathbf{B}_1^{\mathrm{T}} \mathbf{B}_1$

$$\bullet = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 0 \cdot 0 & 1 \cdot 0 + 0 \cdot 0 \\ 0 \cdot 1 + 1 \cdot 0 & 0 \cdot 0 + 1 \cdot 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\bullet = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{-\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{-\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} \\ \frac{-\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}$$

Orthogonal Projection

Change of Basis

Change of Basis - Why are orthogonal bases that nice?

Change of Basis - Projection

 $\hat{\mathbf{a}} = \mathbf{B}_2^{\mathrm{T}} \mathbf{B}_1 \mathbf{a}$

In reduced order modeling

- If not denoted differently, the basis B₁ is the Euclidian basis
- $\hat{\mathbf{a}} = \mathbf{\Phi}^{\mathrm{T}} \mathbf{a}$ is just called Projection
- The truncated basis is written as Φ , describing the subspace
- â are called generalized coordinates

Norm

- Assigns a non-negative real number to an element of the vector space
- Often denoted as ||·||.
- Generalization of the intuitive notion of "length" in the physical world

Often the norm is defined by the scalar product

• $\|\mathbf{a}\| = \sqrt{\mathbf{a}^{\mathrm{T}}\mathbf{a}}$

- E.g. $\mathbf{a} = \begin{cases} 2 \\ 1 \end{cases}$
- $\bullet \|\mathbf{a}\| = \sqrt{2 \cdot 2 + 1 \cdot 1} = \sqrt{5}$
- "L2-Norm", Euclidian norm

Normalization of Basis Vectors – Normalized to 1

Engineers...

Discrete Fourier Transformation and Vector Space

Ansys / APEX CHANNEL PARTNER

- Basis that we have intuitively assumed
- I
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <

... is some kind of model order reduction

Φ

... is some kind of model order reduction

 $\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}$

The basis is orthonormal ③

... is some kind of model order reduction

2.5

Link to Model Order Reduction

PCB Model

Ansys / APEX CHANNEL PARTNER

Vector space of dimension

- $N = 3 \cdot 7383 = 22149$
- Euclidian basis
 - $\mathbf{I} \in \mathbb{R}^{N \times N}$

PCB Model

Vector Space

• Exemplary base vectors

Describing Equations

Ku = F ,with external force vector F

Solving

 $\mathbf{K}^{-1}\mathbf{F} = \mathbf{u}$

EuroSime CADFEM

Projection of Displacements

Projection of Displacements

 $K\Phi_u\widehat{u}=F-\widetilde{r}$

Galerkin Condition

$$\mathbf{K} \mathbf{\Phi}_{\mathbf{u}} \widehat{\mathbf{u}} = \mathbf{F} - \widetilde{\mathbf{r}}$$

Galerkin condition

- The residual \tilde{r} is kept orthogonal to the subspace Φ_u

$$\mathbf{\Phi}_{\mathbf{u}}^{\mathrm{T}}\widetilde{\mathbf{r}}=\mathbf{0}$$

• Multiply by $\mathbf{\Phi}_{\mathbf{u}}^{\mathrm{T}}$

•
$$\Phi_{\underline{u}}^{\mathrm{T}} \mathbf{K} \Phi_{u} \widehat{\mathbf{u}} = \Phi_{\underline{u}}^{\mathrm{T}} \mathbf{F} - \Phi_{u}^{\mathrm{T}} \widetilde{\mathbf{r}}$$

•
$$\underbrace{\Phi_{u}^{1} K \Phi_{u}}_{\widehat{K}} \widehat{u} = \underbrace{\Phi_{u}^{1} F}_{\widehat{F}}$$

© CADFEM

PCB Model

Reduced Order Model

• $\boldsymbol{\Phi}_{u}^{\mathrm{T}} \mathbf{K} \boldsymbol{\Phi}_{u} \widehat{\mathbf{u}} = \boldsymbol{\Phi}_{u}^{\mathrm{T}} \mathbf{F}$

 $\mathbf{\Phi}_{u}^{T}$

Reduced Order Model

•
$$\underbrace{\Phi_{u}^{\mathrm{T}} \mathbf{K} \Phi_{u}}_{\widehat{\mathbf{K}}} \widehat{\mathbf{u}} = \underbrace{\Phi_{u}^{\mathrm{T}} \mathbf{F}}_{\widehat{\mathbf{F}}}$$

Reduced Order Model

Generalized...

- stiffness matrix $\widehat{\mathbf{K}}$
- force vector \widehat{F}
- displacement
 vector û

Idea of Projection Based Model Order Reduction

https://www.facebook.com/examath/photos/a.16610840 7455452/1180064439393172/?type=3

How to find a good Subspace

Ansys / Apex CHANNEL PARTNER

Methods to Determine Subspaces

Based on System Matrices

- Modal Subspace
- Krylov Subspace

Based on Simulation Results

- Gram Schmidt
 Orthogonalization
- Proper Orthogonal Decomposition/ Principal Component Analysis/ Method of Snapshots

How to find a good Subspace

Modal Analysis

Ansys / APEX CHANNEL PARTNER

"What the system wants to do" - Free Vibrations

Equation of motion

- $M\ddot{u} + C\dot{u} + Ku = F_{ext}$
- Damping is neglected
- Independent of external force

 \rightarrow Mü + Ku = 0

- Displacement vector $\mathbf{u} \in \mathbb{R}^N$
- Velocity vector
- Acceleration vector
- External Force

- $\dot{\mathbf{u}} \in \mathbb{R}^N$
- $\ddot{\mathbf{u}} \in \mathbb{R}^N$
- $\mathbf{F}_{\text{ext}} \in \mathbb{R}^N$

- Mass Matrix
- Stiffness Matrix

 $\mathbf{M} \in \mathbb{R}^{N \times N}$ $\mathbf{K} \in \mathbb{R}^{N \times N}$ $\mathbf{C} \in \mathbb{R}^{N \times N}$

• Damping Matrix

"What the system wants to do" - Free Vibrations

- $i^{\text{-th}}$ modeshape Φ_i
- *i*^{-th} natural frequency ω_i

t

Time

"What the system wants to do" - Free Vibrations

	$M\ddot{u} + Ku = 0$	
• with $\ddot{\mathbf{u}} = -\omega^2 \mathbf{u}$		
	$(-\omega^2 \mathbf{M} + \mathbf{K})\mathbf{\phi}_i = 0$	
 This equation is satisfied φ_i = 0 trivial, not of interest Determinant of (-ω²) 	ed if .t M + K) is 0	
(generalized) eigenvalue	e problem	
 Outputs <i>n</i> mode shapes 	$\mathbf{\Phi} = \begin{bmatrix} \mathbf{\Phi}_1 & \dots & \mathbf{\Phi}_n \end{bmatrix}$	

n mode shapes *n* natural frequencies

 $\boldsymbol{\omega} = \{ \omega_1 \quad \dots \quad \omega_n \}$

"What the system wants to do" - Free Vibrations

Mode 1, $f_1 = 3.1$ kHz Mode 2, $f_2 = 4.3$ kHz Mode 3, $f_3 = 7.3$ kHz

"What the system wants to do" - Free Vibrations

Modal Analysis

Krylov Subspace - Implicit Moment Matching

CADFEM

Ansys / APEX CHANNEL PARTNER

Krylov Subspace

General definition of Krylov Subspace

•
$$\mathcal{K} = \mathcal{K}(\mathbf{A}, \mathbf{q}) = \operatorname{span}\{\mathbf{q}, \mathbf{A}\mathbf{q}, \dots, \mathbf{A}^{m-1}\mathbf{q}\}$$

Used in many algorithms

- Arnoldi (solution of eigenvalue problems)
- Lanczos (solution of eigenvalue problems)
- GMRES (approximate solution of systems of linear equations)
- QMR (approximate solution of systems of linear equations)

Moment Matching

EuroSime CADFEM

What is a Moment in this Context?

General transfer function

- in Laplace domain
- Fourier integral is a special case with $s = i\omega$

•
$$(s^2 \mathbf{M} - \mathbf{K})\mathbf{u} = \mathbf{F}_{\text{ext}}$$

•
$$\underbrace{(s^2 \mathbf{M} - \mathbf{K})}_{\mathbf{K}_{eq}(s)}^{-1} \mathbf{F}_{ext} = \mathbf{u}$$

Moment Matching

What is a Moment in this Context?

$$\underbrace{\left(s^{2}\mathbf{M}-\mathbf{K}\right)}_{\mathbf{K}_{\mathrm{eq}_{(s)}}}^{-1}\mathbf{F}_{\mathrm{ext}}=\mathbf{u}$$

Taylor series

• around s_0^2

•
$$\mathbf{u} = \sum_i \mathbf{m}_i (s^2 - s_0^2)^i$$

- Hint: the *i*-th derivative in the Laplace domain is just $s^i \cdot f(s)$
- \mathbf{m}_i are called moments of the transfer function

Moment Matching

Explicit Moment Matching

© CADFEM

Moment Matching

Implicit Moment Matching

• The first moment **q** is just the solution at the expansion point

Implicit Moment Matching - Comments

Implicit moment matching is not limited to structural dynamics

Expansion point should be set according to the frequency range of interest

It is possible to use multiple expansion points

There is no established rule how many vectors should be considered

Can be expanded to "parametric model order reduction" – the Taylor expansion is then done also for the parameter

Based on Simulation Results

Ansys / APEX

CADFEM

Methods to Determine Subspaces

Based on Simulation Results

Snapshot matrix

• Do a calculation for *m* timesteps and assemble the results of interest $\mathbf{y} \mathbb{R}^N$ in a $\mathbf{S} = [\mathbf{y}_1, \dots \mathbf{y}_n] \in \mathbb{R}^{N \times m}$

The snapshots define the vector space of the solution – how to find an orthonormal basis?

Gram Schmidt Orthogonalization

CADFEM

Ansys / APEX CHANNEL PARTNER

14.667 13,333 12 10.667 9.3333 8 6.6667 5.3333 4 Min - 0.1 0.0963 Max 0.0667 0.0333 -0.0333 -0.0667 -0.0963 Min - -0.1

Gram Schmidt Orthogonalization

Given

•*m* vectors \mathbf{v}_i in \mathbb{R}^N

Target

•*m* orthonormal vectors \mathbf{u}_i in \mathbb{R}^N

Normalization of vector v₁ Orthogonalization of v_2 Normalization of vector \mathbf{u}_2' Orthogonalization of v_3 Normalization of vector \mathbf{u}_{3}^{\prime} Orthogonalization of v_m

Normalization of vector \mathbf{u}'_m

https://upload.wikimedia.org/wikipedia/commons/e/ee/Gram-Schmidt_orthonormalization_process.gif

Gram Schmidt Orthogonalization

Projection Based Model Order Reduction for Multiphysical Problems | Short Course Part 2 – I | Vector Spaces and Subspace Generation

Applications

Used in different numerical algorithms (e.g. for the calculation of Krylov subspaces)

Proper Orthogonal Decomposition

CADFEM

Ansys / APEX CHANNEL PARTNER

Proper Orthogonal Decomposition

· 🔽	arget
F	ind the best linear subspace for the approximation of the data $= [\mathbf{y}_1, \mathbf{y}_n] \in \mathbb{R}^{N \times m}$
- P	rincipal Component Analysis
C T T	compute the eigenvalue decomposition of $\mathbf{Y} = \mathbf{S}\mathbf{S}^{\mathrm{T}} \in \mathbb{R}^{N \times N}$ Sorted Eigenvalues $\boldsymbol{\lambda} = \{\lambda_1,, \lambda_N\}$ and Eigenvectors $\boldsymbol{\Psi} = [\boldsymbol{\Psi}_1,, \boldsymbol{\Psi}_N]$ Basisvectors $\boldsymbol{\Phi}_i = \boldsymbol{\Psi}_i \in \mathbb{R}^N$
- N	lethod of Snapshots
C T T	compute the eigenvalue decomposition of $\mathbf{Y} = \mathbf{S}^{\mathrm{T}}\mathbf{S} \in \mathbb{R}^{m \times m}$ \Rightarrow Sorted Eigenvalues $\boldsymbol{\lambda} = \{\lambda_1,, \lambda_N\}$ and Eigenvectors $\boldsymbol{\Psi} = [\boldsymbol{\Psi}_1,, \boldsymbol{\Psi}_N]$ \Rightarrow Basisvectors $\boldsymbol{\Phi}_i = \mathbf{S} \boldsymbol{\Psi}_i \in \mathbb{R}^N$
B	est Linear Approximation

Proper Orthogonal Decomposition

EuroSimE CADFEM

Use Cases

Principal Component Analysis

- •Compute the eigenvalue decomposition of $\mathbf{Y} = \mathbf{S}\mathbf{S}^{\mathrm{T}} \in \mathbb{R}^{N \times N}$
- •Efficient if length N of snapshot vectors (e.g. locations) is low compared to count m of snapshots (e.g. timesteps)
- → Measurement data

Method of Snapshots

- •Compute the eigenvalue decomposition of $\mathbf{Y} = \mathbf{S}^{\mathrm{T}}\mathbf{S} \in \mathbb{R}^{m \times m}$
- •Efficient if count *m* of snapshots (e.g. timesteps) is low compared to length *N* of snapshot vectors (e.g. locations)
- → Simulation data

Summary

Ansys / Apex CHANNEL PARTNER

CADFEM

CADFEM

FuroSimE

Mode 3, $f_3 = 7.3$ kHz