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Discrete Fourier Transformation

…is some kind of model order 
reduction
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• Continuous 
series 𝑦(𝑥) ∈ ℝ∞

→ Infinite number 
of points

Starting point

Discrete Fourier Transformation
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• Continuous series 𝑦(𝑥) ∈ ℝ∞

→ Infinite number of points

Starting point

• 𝐲 = {𝑦0, … , 𝑦N−1} 𝑦 ∈ ℝ𝑁

• 𝑁 Number of timepoints

Discretized

→ From infinite to 𝑁 ☺

Discrete Fourier Transformation

Discretization
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Discrete Fourier Transformation
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Discrete Fourier Transformation
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Discrete Fourier Transformation
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Discrete Fourier Transformation
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Discrete Fourier Transformation
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Discrete Fourier Transformation
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Discrete Fourier Transformation
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• ො𝑦𝑘 = σ𝑗=0
𝑁−𝑖 e−2𝜋i

𝑗𝑘

𝑁 𝑦𝑗

• for 𝑘 = 0, … 𝑁 − 1

Fourier Coefficients

• ො𝐲 = 𝚽T𝐲

• with 𝚽 𝑗, 𝑘 = e−2𝜋i
𝑗𝑘

𝑁

In Matrix Notation

Discrete Fourier Transformation
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• 𝑦𝑘 =
1

𝑁
σ𝑗=0

𝑁−𝑖 e2𝜋i
𝑗𝑘

𝑁 ො𝑦𝑗

• for 𝑘 = 0, … 𝑁 − 1

Inverse Discrete 
Fourier Transformation

• 𝐲 = [𝚽T]−1 ො𝐲

• with 𝚽 𝑗, 𝑘 = e−2𝜋i
𝑗𝑘

𝑁

In Matrix Notation

Discrete Fourier Transformation
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Link to model order reduction?

• 𝑦 = {𝑦0, … , 𝑦N−1} 𝑦 ∈ ℝ𝑁, Order 𝑁

Discretized signal

• ො𝑦𝑘 = σ𝑗=0
𝑁−𝑖 e−2𝜋i

𝑗𝑘

𝑁 𝑦𝑗, ො𝑦 ∈ ℝ𝑁, Order 𝑁

• for 𝑘 = 0, … 𝑁 − 1

Representation by DFT

• …but in different coordinates

• They can be interpretated in a different way

The same data is represented

Let’s call ො𝑦 generalized coordinates

Discrete Fourier Transformation
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• By taking less 
Fourier 
coefficients

• Error is 
introduced

Reduce 
Dimension

Discrete Fourier Transformation

…is some kind of model order reduction
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Vector Space
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Vector 𝐚

Mechanical 
engineer

• Force

CFD

• Velocity

Electrical 
engineer

• Voltage in the 
complex plane

My girlfriend

• There is nothing this 
arrow points on

Mathematician

• A vector in ℝ2

Vector Space 𝐕
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Basis of Vector Space

• …of a vector space 𝐕 with basis vectors 𝐛1 to 𝐛𝑚

• 𝐁 = [𝐛1, … , 𝐛𝑚] ∈ ℝ𝑚

• 𝑚 is the dimension of the vector space

Basis 𝐁

• Each vector can be represented as a linear combination 
of basis vectors and this representation is unique

• Euclidian basis ℝ𝑚 (also called standard, natural or 
canonical basis)

• 𝐛1 =
1
0

, 𝐛2 =
0
1

• 𝐁1 =
1 0
0 1

= 𝐈

Those basis vectors must be linear 
independent

Vector Space 𝐕
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Basis of Vector Space

• “1” at one node, all 
others are 0

• ∈ ℝ𝑁

• 𝑁 is the number of dofs

FEM

Vector Space 𝐕

…
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Coordinates of a vector

• …with its coordinates 𝑎1 to 𝑎𝑁 with respect to basis 𝐁1

• 𝐚 = {𝑎1, … , 𝑎𝑁} ∈ ℝ𝑁

• E.g. 𝐚 =
2
1

• 2
1
0

+ 1
0
1

= 𝐁1𝐚 =
2
1

Vector 𝐚

• …as a linear combination of basis vectors

• and this representation is unique

Each vector can be represented

• 𝐁𝐚 is called Expansion

In reduced order modeling

Vector Space 𝐕

Projection Based Model Order Reduction for Multiphysical Problems | Short Course Part 2 – I | Vector Spaces and Subspace Generation 24



© CADFEM 

Vector Space 𝐕

Coordinates of a vector

…= + + +

57.4 54.4 51.4

0
⋮
0
1
0
⋮
0

0
⋮
0
1
0
⋮
0

0
⋮
0
1
0
⋮
0
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The basis is not unique!

•E.g. 𝐛3 =

2

2

2

2

, 𝐛4 =

− 2

2

2

2

•𝐁𝟐 =

2

2

− 2

2

2

2

2

2

•spans the same vector space

Different basis

•…with its coordinates ො𝑎1 to ො𝑎𝑁 with respect to basis 𝐁2

•ෝ𝒂 =
2.12

−0.71

•2.12

2

2

2

2

+ −0.71
−

2

2

2

2

= 𝐁2ෝ𝒂

Vector 𝐚

Vector Space 𝐕
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Vector Space 𝐕

The basis is not unique!

…= + + +

1200 -63.6 51.4
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Vector Space 𝐕

The basis is not unique!

…= + + +

1200 -72.3 38.2
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Truncated Basis

• 𝐁1 =
1 0
0 1

• E.g. 𝐁11
=

1
0

or 𝐁12
=

0
1

One can truncate the basis by 
neglecting some basis vectors

The truncated basis spans a 
subspace of 𝐕

Vector Space 𝐕
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Vector Space 𝐕

Truncated Basis

…= + + +

1200 -72.3 38.2

Projection Based Model Order Reduction for Multiphysical Problems | Short Course Part 2 – I | Vector Spaces and Subspace Generation 30



© CADFEM 

Vector Space 𝐕

Truncated Basis

…≈ + + +

1200 -72.3 38.2
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Vector Space 𝐕

Truncated Basis

= +

Error due to truncated basis
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• Mathematical relationship that 
assigns a scalar to two vectors

• Often denoted as by 𝐚, 𝐜

• 𝐚, 𝐜 = 𝐚T𝐜 =
σ𝑗=1

𝑁 𝑎𝑗𝑐𝑗 = 𝑎1𝑐1 + ⋯ + 𝑎𝑁𝑐𝑁

• E.g. 𝐚 =
2
1

, 𝐜 =
0
1

• 𝐚T𝐜 = 2 ⋅ 0 + 1 ⋅ 1 = 1

Scalar Product

Vector Space 𝐕

Scalar product / Inner Product
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• 𝐚T𝐜 = 𝐚 𝐜 cos(𝜙)

• 𝜙 = arccos(
𝐚T𝐜

𝐚 𝐜
)

• E.g. 𝐚 =
2
1

, 𝐜 =
0
1

• 𝜙 = arccos
2⋅0+1⋅1

5⋅1
= 63°

Geometric interpretation in ℝ2

Vector Space 𝐕

Scalar product / Inner Product

𝜙
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• In ℝ2 the angle is 90°

• E.g. 𝐚 =
2
0

, 𝐜 =
0
1

• 𝐚T𝐜 = 2 ⋅ 0 + 0 ⋅ 1 =0

Two vectors are orthogonal 
if the scalar product is 0

Vector Space 𝐕

Orthogonality

𝜙
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• The scalar product is 0 for 𝐛𝑖
T𝐛𝑗 with 𝑖 ≠ 𝑗

Orthogonal basis

• =
1 0
0 1

1 0
0 1

=
1 ⋅ 1 + 0 ⋅ 0 1 ⋅ 0 + 0 ⋅ 0
0 ⋅ 1 + 1 ⋅ 0 0 ⋅ 0 + 1 ⋅ 1

=
1 0
0 1

𝐁1
T𝐁1

• =

2

2

2

2

− 2

2

2

2

2

2

− 2

2

2

2

2

2

=

2

2
⋅

2

2
+

2

2
⋅

2

2

2

2
⋅

− 2

2
+

2

2
⋅

2

2

− 2

2
⋅

2

2
+

2

2
⋅

2

2

− 2

2
⋅

− 2

2
+

2

2
⋅

2

2

=
1 0
0 1

𝐁2
T𝐁2

Vector Space 𝐕

Orthogonal Basis
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• 𝐚 =
2
1

Given vector 𝐚

•𝐁1 =
1 0
0 1

•𝐁1𝐚 = 2
1
0

+ 1
0
1

w.r.t to basis 𝐁1

•â1 = 𝐁11
T 𝐚 = 1 0

2
1

= 2

Projection onto truncated basis 𝐁11
=

1
0

•â2 = 𝐁12

T 𝐚 = 0 1
2
1

= 1

Projection onto truncated basis 𝐁12
=

0
1

Vector Space 𝐕

Orthogonal Projection
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• 𝐚 =
2
1

• From 𝐁1 =
1 0
0 1

to 𝐁𝟐 =

2

2

− 2

2

2

2

2

2

Change of basis of vector 𝐚

• 𝐁1𝐚 = 𝐁𝟐 ො𝐚

Linear system of equations

• ො𝐚 = 𝐁𝟐
−1 𝐁1𝐚

Solution

Vector Space 𝐕

Change of Basis
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• ො𝐚 = 𝐁𝟐
−1 𝐁1𝐚

Solution

• 𝐁𝟐
−1 = 𝐁𝟐

T

• ො𝐚 = 𝐁𝟐
T 𝐁1𝐚

• ො𝐚 =

2

2

2

2

− 2

2

2

2

1 0
0 1

2
1

=
2.12
−.71

Why are orthogonal bases that 
nice?

Vector Space 𝐕

Change of Basis - Why are orthogonal bases that nice?
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ො𝐚 = 𝐁𝟐
T 𝐁1𝐚

• If not denoted differently, the basis 𝐁1
is the Euclidian basis

• ො𝐚 = 𝚽T 𝐚 is just called Projection

• The truncated basis is written as 𝚽, 
describing the subspace

• ො𝐚 are called generalized coordinates

In reduced order modeling

Vector Space 𝐕

Change of Basis - Projection
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• Assigns a non-negative real number to an element of 
the vector space

• Often denoted as ∙ .
• Generalization of the intuitive notion of "length" in the 

physical world

Norm

• 𝐚 = 𝐚T𝐚

• E.g. 𝐚 =
2
1

• 𝐚 = 2 ⋅ 2 + 1 ⋅ 1 = 5
• „L2-Norm“, Euclidian norm

Often the norm is defined by the scalar 
product

Vector Space 𝐕

Norm
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Vector Space 𝐕

Normalization of Basis Vectors – Normalized to 1

…≈ + + +

1200 -72.3 38.2
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Vector Space 𝐕

𝐕

Basis

Scalar 

Product

Norm

𝜙
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Engineers…

Vector Space 𝐕
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Discrete Fourier Transformation

…is some kind of model order reduction

• 𝐲 = {𝑦0, … , 𝑦N−1} 𝑦 ∈
ℝ𝑁

• 𝑁 Number of timepoints

Discretized

→ From infinite to 
𝑁 ☺
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• Basis that we have intuitively 

assumed

• 𝐈

Discrete Fourier Transformation

…is some kind of model order reduction

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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Discrete Fourier Transformation

…is some kind of model order reduction
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• In matrix notation

• ො𝐲 = 𝚽T𝐲

Discrete Fourier 
Transformation

Projection!

Discrete Fourier Transformation

…is some kind of model order reduction
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• In matrix notation

• ො𝐲 = 𝚽T𝐲

Discrete Fourier 
Transformation

• Change of basis

Projection!

Discrete Fourier Transformation

…is some kind of model order reduction

𝚽
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The basis is 
orthonormal ☺

Discrete Fourier Transformation

…is some kind of model order reduction

𝚽T𝚽

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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• In matrix notation

• 𝐲 = [𝚽T]−1 ො𝐲

• [𝚽T]−1 = [𝚽T]T = 𝚽

• 𝐲 = 𝚽ො𝐲

Inverse Discrete 
Fourier Transformation

Expansion!

Discrete Fourier Transformation

…is some kind of model order reduction
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• by taking less Fourier coefficients

Possibility to reduce the 
dimension

• to a truncated subspace

Projection

• often measured by the L2-Norm of 
the difference

Error

Discrete Fourier Transformation

…is some kind of model order reduction
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Structural model

•7383 nodes

•5104 elements

Linear elements

•𝑢𝑥, 𝑢𝑦, 𝑢𝑧

3 Degrees of freedom per node

•𝐮 =

𝑢𝑥1

𝑢𝑦1

𝑢𝑧1

⋮
𝑢𝑦𝑁

𝑢𝑧𝑁

Displacement vector

PCB Model

Discretization
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• Exemplary base vectors• Vector space of dimension

• 𝑁 = 3 ⋅ 7383 = 22149

• Euclidian basis

• 𝐈 ∈ ℝ𝑁×𝑁

PCB Model

Vector Space

Projection Based Model Order Reduction for Multiphysical Problems | Short Course Part 2 – I | Vector Spaces and Subspace Generation 57
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Symmetric

Positive definite

Sparse

PCB Model

Stiffness Matrix 𝐊
𝑁

𝑁
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𝐊𝐮 = 𝐅 ,with external force vector 𝐅

PCB Model

Describing Equations

F=𝐮

𝑁

𝑁
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𝐊−𝟏𝐅 = 𝐮

PCB Model

Solving

𝐮F =

𝑁

𝑁
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• onto a smaller subspace of dimension 𝑛 ≪ 𝑁

Project the displacements

• As it is only an approximation, the residual 𝐫 is 
introduced

𝐮 = 𝚽𝐮ෝ𝐮 + 𝐫

• 𝐊𝚽𝐮(ෝ𝐮 + 𝐫) = 𝐅 − 𝐊𝚽𝐮𝐫
• 𝐊𝚽𝐮ෝ𝐮 = 𝐅 − 𝐊𝚽𝐮𝐫

𝐊𝐮 = 𝐅

𝐊𝚽𝐮ෝ𝐮 = 𝐅 − 𝐫

PCB Model

Projection of Displacements

𝐮=𝚽u ෝ𝐮

𝑛

𝐫+
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𝐊𝚽𝐮ෝ𝐮 = 𝐅 − 𝐫

PCB Model

Projection of Displacements

F
ෝ𝐮

𝐫-=𝚽u ෝ𝐮

𝑛𝑁

𝑁
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𝐊𝚽𝐮ෝ𝐮 = 𝐅 − 𝐫

• The residual 𝐫 is kept orthogonal to the subspace 𝚽𝐮

Galerkin condition

• Multiply by 𝚽𝐮
T

• 𝚽𝐮
T 𝐊𝚽𝐮ෝ𝐮 = 𝚽𝐮

T𝐅 − 𝚽𝐮
T 𝐫

• 𝚽𝐮
T 𝐊𝚽𝐮

𝐊

ෝ𝐮 = ถ𝚽𝐮
T𝐅
𝐅

𝚽𝐮
T 𝐫 = 𝟎

PCB Model

Galerkin Condition
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• 𝚽𝐮
T 𝐊𝚽𝐮ෝ𝐮 = 𝚽𝐮

T𝐅

PCB Model

Reduced Order Model

F𝚽u ෝ𝐮𝚽u
T 𝚽u

T=
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PCB Model

Reduced Order Model

𝐅𝐊 =ෝ𝐮

𝑛

𝑛

• 𝚽𝐮
T 𝐊𝚽𝐮

𝐊

ෝ𝐮 = ถ𝚽𝐮
T𝐅
𝐅
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• stiffness matrix 𝐊

• force vector 𝐅
• displacement 

vector ෝ𝐮

Generalized…

PCB Model

Reduced Order Model

𝐅

𝐊

ෝ𝐮

𝑛

𝑛

Projection Based Model Order Reduction for Multiphysical Problems | Short Course Part 2 – I | Vector Spaces and Subspace Generation 66



© CADFEM 

PCB Model

Idea of Projection Based Model Order Reduction

https://www.facebook.com/examath/photos/a.16610840

7455452/1180064439393172/?type=3
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Based on System Matrices

• Modal Subspace

• Krylov Subspace

Based on Simulation 
Results

• Gram Schmidt 
Orthogonalization

• Proper Orthogonal 
Decomposition/ Principal 
Component Analysis/ 
Method of Snapshots

Methods to Determine Subspaces
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• 𝐌 ሷ𝐮 + 𝐂 ሶ𝐮 + 𝐊𝐮 = 𝐅ext

• Damping is neglected

• Independent of external 
force

Equation of motion

→ 𝐌 ሷ𝐮 + 𝐊𝐮 = 𝟎

• Displacement vector 𝐮 ∈ ℝ𝑁

• Velocity vector ሶ𝐮 ∈ ℝ𝑁

• Acceleration vector ሷ𝐮 ∈ ℝ𝑁

• External Force 𝐅ext ∈ ℝ𝑁

• Mass Matrix 𝐌 ∈ ℝ𝑁×𝑁

• Stiffness Matrix 𝐊 ∈ ℝ𝑁×𝑁

• Damping Matrix 𝐂 ∈ ℝ𝑁×𝑁

Modal Analysis

“What the system wants to do” – Free Vibrations
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• 𝐌 ሷ𝐮 + 𝐂 ሶ𝐮 + 𝐊𝐮 = 𝐅ext

• Damping is neglected

• Independent of external force

Equation of motion

𝐌 ሷ𝐮 + 𝐊𝐮 = 𝟎

• 𝐮 = 𝚽𝑖cos𝜔𝑖𝑡
• Decomposition of 𝑖-1-DOF-Oscillators

For a linear system, free 
vibrations are harmonic • 𝑖-th modeshape 𝚽𝑖

• 𝑖-th natural frequency 𝜔𝑖

• Time 𝑡

Modal Analysis

“What the system wants to do” – Free Vibrations
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• with ሷ𝐮 = −𝜔2𝐮

𝐌 ሷ𝐮 + 𝐊𝐮 = 𝟎

• This equation is satisfied if

• 𝛟𝑖 = 𝟎
• trivial, not of interest

• Determinant of (−𝜔2𝐌 + 𝐊) is 𝟎

(−𝜔2𝐌 + 𝐊)𝛟𝑖 = 𝟎

• Outputs

• 𝑛 mode shapes 𝚽 = 𝚽1 … 𝚽𝑛

• 𝑛 natural frequencies 𝛚 = 𝜔1 … 𝜔𝑛

(generalized) eigenvalue problem

Modal Analysis

“What the system wants to do” – Free Vibrations
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Mode 1, 𝑓1 = 3.1kHz Mode 2, 𝑓2 = 4.3kHz Mode 3, 𝑓3 = 7.3kHz

Modal Analysis

“What the system wants to do” – Free Vibrations
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Implemented in all commercial FE-Codes

•The natural frequencies are ordered, from low to high frequencies

•In general: Dimension of the vector space of the model

•→ The same vector space is spanned

•Rule of thumb:

•Consider mode shapes up to twice the excitation frequency

•→ Modal Truncation

Number of mode shapes?

•Orthogonal basis

•System matrices (𝐊 and 𝐌) are decoupled

•Modal Superposition

•With “Mass normalization”

•𝚽T𝐌𝚽 = diag(1), scalar product

•𝚽T𝐊𝚽 = diag(𝜔2)

Properties of mode shapes

Modal Analysis

“What the system wants to do” – Free Vibrations

𝐊
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Modal Analysis

“What the system wants to do” – Free Vibrations

• Small structures →
many modes

• Excitation is not 
considered

• Many inner modes

• Only for linear 
dynamics

• Commonly used for 
structural

Drawbacks

1

12

20
25

24

𝐊

2
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• 𝒦 = 𝒦 𝐀, 𝐪 = span{𝐪, 𝐀𝐪, … , 𝐀𝑚−1𝐪}

General definition of Krylov Subspace

• Arnoldi (solution of eigenvalue problems)

• Lanczos  (solution of eigenvalue problems)

• GMRES (approximate solution of systems of linear equations)

• QMR (approximate solution of systems of linear equations)

• …

Used in many algorithms

Krylov Subspace
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• in Laplace domain

• Fourier integral is a special
case with 𝑠 = i𝜔

• (𝑠2𝐌 − 𝐊)𝐮 = 𝐅ext

• 𝑠2𝐌 − 𝐊
𝐊eq(𝑠)

−𝟏
𝐅𝐞𝐱𝐭 = 𝐮

General transfer 
function

Moment Matching

What is a Moment in this Context?

s
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𝑠2𝐌 − 𝐊
𝐊eq(𝑠)

−𝟏
𝐅𝐞𝐱𝐭 = 𝐮

• around 𝑠0
2

• 𝐮 = σ𝑖 𝐦𝑖 𝑠2 − 𝑠0
2 𝑖

• Hint: the 𝑖-th derivative in the Laplace 
domain is just  𝑠𝑖 ⋅ 𝑓(𝑠)

• 𝐦𝑖 are called moments of the transfer 
function

Taylor series

Moment Matching

What is a Moment in this Context?

s
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𝐮 = 

𝑖

𝐦𝑖 𝑠2 − 𝑠0
2 𝑖

• 𝐦𝑖 = ෩𝐌𝑖 ෨𝐅

• ෩𝐌𝑖 = −𝐊eq 𝑠0

−1 𝐌
𝑖

• ෨𝐅 = 𝐊eq 𝑠0

−1 𝐅ext

Explicit calculation of moments 
is numerically unstable

Moment Matching

Explicit Moment Matching

s

s
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• 𝐦𝑖 = ෩𝐌𝑖 ෨𝐅

• ෩𝐌𝑖 = −𝐊eq 𝑠0

−1 𝐌
𝑖

• ෨𝐅 = 𝐊eq 𝑠0

−1 𝐅ext

Explicit Moments

• 𝒦 = 𝒦 𝐀, 𝐪 = span{𝐪, 𝐀𝐪, … , 𝐀𝑚−1𝐪}

• 𝐀 = ෩𝐌

• 𝐪 = ෨𝐅

Krylov subspace definition

• The first moment 𝐪 is just the solution at the expansion point

The moments lie in the Krylov Subspace!

Moment Matching

Implicit Moment Matching
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Moment Matching

Implicit Moment Matching - Comments

The load is included!

No decoupling of the 
reduced matrices

2

3

4

5

1

𝐊 𝐌
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Implicit moment matching is not limited to structural 
dynamics

Expansion point should be set according to the frequency 
range of interest

It is possible to use multiple expansion points

There is no established rule how many vectors should be 
considered

Can be expanded to “parametric model order reduction” –
the Taylor expansion is then done also for the parameter

Moment Matching

Implicit Moment Matching - Comments
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Based on Simulation Results
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• Do a calculation for 𝑚 timesteps and assemble the results 
of interest 𝐲 ℝ𝑁 in a 𝐒 = [𝐲1, … 𝐲𝑛] ∈ ℝ𝑁×𝑚

Snapshot matrix 

The snapshots define the vector space of the 
solution – how to find an orthonormal basis?

Methods to Determine Subspaces

Based on Simulation Results
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Gram Schmidt 
Orthogonalization
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•𝑚 vectors 𝐯𝑖 in ℝ𝑁

Given

•𝑚 orthonormal vectors 𝐮𝑖 in ℝ𝑁

Target

•𝐮1 =
𝐯1

𝐯1
Normalization of vector 𝐯1

•𝐮2
′ = 𝐯2 −

𝐯2,𝐮1

𝐮1,𝐮1
𝐮1 Orthogonalization of 𝐯2

•𝐮2 =
𝐮2

′

𝐮2
′ Normalization of vector 𝐮2

′

•𝐮3
′ = 𝐯3 −

𝐯3,𝐮1

𝐮1,𝐮1
𝐮1 −

𝐯3,𝐮2

𝐮2,𝐮2
𝐮2 Orthogonalization of 𝐯3

•𝐮3 =
𝐮3

′

𝐮2
′ Normalization of vector 𝐮3

′

• …

•𝐮𝑚
′ = 𝐯𝑚 − σ𝑖=1

𝑛−1 𝐯𝑚,𝐮𝑖

𝐮𝑖,𝐮í
𝐮𝑖 Orthogonalization of 𝐯𝒎

•𝐮𝑚 =
𝐮𝑚

′

𝐮𝑚
′ Normalization of vector 𝐮𝑚

′

Algorithm

Gram Schmidt Orthogonalization

https://upload.wikimedia.org/wikipedia/commons/e/ee/Gram-Schmidt_orthonormalization_process.gif
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Gram Schmidt Orthogonalization

Snapshots

Basis
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Gram Schmidt Orthogonalization

Applications

Find an orthonormal basis for given vectors

• Engineering Knowledge: Select appropriate snapshots 
to calculate the basis

How to truncate the basis?

Used in different numerical algorithms (e.g. 
for the calculation of Krylov subspaces)
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Proper Orthogonal 
Decomposition
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Find the best linear subspace for the approximation of the data

𝐒 = [𝐲1, … 𝐲𝑛] ∈ ℝ𝑁×𝑚

Target

Compute the eigenvalue decomposition of 𝐘 = 𝐒𝐒T ∈ ℝ𝑁×𝑁

→ Sorted Eigenvalues 𝛌 = {𝜆1, … , 𝜆𝑁 } and Eigenvectors 𝚿 = [𝚿1, … , 𝚿𝑁]
→ Basisvectors 𝚽𝑖 = 𝚿𝑖 ∈ ℝ𝑁

Principal Component Analysis

Compute the eigenvalue decomposition of 𝐘 = 𝐒T𝐒 ∈ ℝ𝑚×𝑚

→ Sorted Eigenvalues 𝛌 = {𝜆1, … , 𝜆𝑁 } and Eigenvectors 𝚿 = [𝚿1, … , 𝚿𝑁]
→ Basisvectors 𝚽𝑖 = 𝐒𝚿𝑖 ∈ ℝ𝑁

Method of Snapshots

Take 𝑛 basisvectors corresponding to the largest eigenvalues 

Best Linear Approximation

Proper Orthogonal Decomposition
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Use Cases

•Compute the eigenvalue decomposition of 𝐘 = 𝐒𝐒T ∈ ℝ𝑁×𝑁

•Efficient if length 𝑁 of snapshot vectors (e.g. locations) is low compared to count 𝑚 of snapshots (e.g. timesteps)

→ Measurement data

Principal Component Analysis

•Compute the eigenvalue decomposition of 𝐘 = 𝐒T𝐒 ∈ ℝ𝑚×𝑚

•Efficient if count 𝑚 of snapshots (e.g. timesteps) is low compared to length 𝑁 of snapshot vectors (e.g. locations)

→ Simulation data

Method of Snapshots

Proper Orthogonal Decomposition
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Summary

Nonlinear within ROM?
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