Projection Based Model Order Reduction for Multiphysical Problems

Short Course Part 1 Electric-Thermal System Model for Power Electronics

Hanna Baumgartl, Mike Feuchter, Martin Hanke CADFEM Germany GmbH

Power Electronics

- Power electronics: gets hot
- Typical applications: Inverters, bus bar systems, battery connectors
- Problem:
 - Temperature influences device characteristic and losses
 - Temperature distribution influences current distribution new in system
- Simulation solutions:
 - Coupled field simulation electrical + thermal bidirectional
 - but: transient effects (PWM, drive cycle,...) require many time steps
 - → System model required

Source: High Power SiC and Si Module Platform for Automotive Traction Inverter, J Schuderer et al, 2019 PCIM Europe

Overview

- Electric-Thermal Simulation: Field and System
 - Electric reduction: Current density modes
 - Thermal reduction: Krylov reduction
 - Coupling on system level
- Projection: Reduce models and couple domains
 - What are modes and where do we get them from?
 - Nonlinearities? Devide and Conquer! And then couple again...
- Summary: Electric-Thermal System Model
- Open Discussion

Example Half Bridge

Projection Based Model Order Reduction for Multiphysical Problems | Short Course Part 1 published in Electric-Thermal System Model for Power Electronics

Talk Infineon at mOre driVE 2023, published in i&e, 2023

Δ

Electric Circuit Half Bridge

Embedding Parasitics Model into Circuit

Parasitics model (RLC-Matrices)

- Conservative
- Frequency dependent
- No temperature dependence
- No heat generation

Connect MOSFET with thermal ROM

MOSFETs with thermal ports

Connect MOSFET with thermal ROM

MOSFETs with thermal ports

- MOSFETs with thermal ports
- Connected to thermal ROM of PCB
- FETs as heat generation ports

Thermal ROM

Data fitting: Linear Time Invariant models (LTI)

- Time series fit from CFD or thermal field simulation (FEM)
- Input signals not necessarily a step function
- Definition of inputs (heat flow) and outputs (temperatures)
- One analysis per input
- Thermal field analysis:
 - Transient temperature field analysis with fixed boundary conditions
- · CFD Simulation:
 - · Conjugate heat transfer with constant mass flow
- Resulting model:
 - state space model (linear)
 - no temperature depending material properties
- Advantages:
 - Spatial resolution of HTCs due to fluid flow + advection due to mass transport is considered by default
- · Disadvantages:
 - One transient simulation per input \rightarrow numerically very expensive

Projection Based Model Order Reduction for Multiphysical Problems | Short Course Part 1

Electric-Thermal System Model for Power Electronics

Thermal ROM

Projection onto a subspace: Model Order Reduction

- · Starting Point: Thermal field simulation (FEM)
 - Definition of boundary conditions
 - Definition of inputs (loads = heat fluxes/ heat generations/power densities, temperatures, HTCs)
 - Definition of outputs (temperatures, heat fluxes)
- Export of system matrices
- Reduction: Via Projection
- Resulting model:
 - State Space model (linear)
 - Consider parameters:
 - Temperature depending material properties
 - · Variable mass flow
- · Advantages:
 - Very fast with high quality
 - No (transient) simulation run required
- Disadvantages:
 - Complex HTC distributions need to be evaluated and mapped from CFD

transient equation of heat conduction :

Reshape equation to explicit state space form:

$$\dot{\vartheta} = -\mathbf{C}_{\text{th}}^{-1} \mathbf{K}_{\text{th}} \vartheta + \mathbf{C}_{\text{th}}^{-1} \mathbf{Q} \qquad \dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$
$$\vartheta = \mathbf{I} \vartheta \qquad \mathbf{y} = \mathbf{C}\mathbf{x}$$

 \Rightarrow A = -C⁻¹_{th} K_{th}, B = C⁻¹_{th} Characterization of system dynamics

 \rightarrow **C** = **I** statevector ϑ == outputvector.

Approximation of vector of nodal temperatures:

Projection: V : Projection Matrix

 $\widehat{\boldsymbol{\vartheta}}$: Temperatures in Subspace

$$\begin{cases} \vartheta_{1} \\ \vartheta_{2} \\ \vartheta_{3} \\ \vartheta_{4} \\ \vdots \\ \vartheta_{M} \end{cases} \approx \begin{cases} v_{1_1} \cdot \hat{\vartheta}_{1} + v_{2_1} \cdot \hat{\vartheta}_{2} + v_{3_1} \cdot \hat{\vartheta}_{3} \\ v_{1_2} \cdot \hat{\vartheta}_{1} + v_{2_2} \cdot \hat{\vartheta}_{2} + v_{3_2} \cdot \hat{\vartheta}_{3} \\ v_{1_3} \cdot \hat{\vartheta}_{1} + v_{2_3} \cdot \hat{\vartheta}_{2} + v_{3_3} \cdot \hat{\vartheta}_{3} \\ v_{1_4} \cdot \hat{\vartheta}_{1} + v_{2_4} \cdot \hat{\vartheta}_{2} + v_{3_4} \cdot \hat{\vartheta}_{3} \\ \vdots \\ v_{1_M} \cdot \hat{\vartheta}_{1} + v_{2_M} \cdot \hat{\vartheta}_{2} + v_{3_M} \cdot \hat{\vartheta}_{3} \end{cases} = \begin{bmatrix} v_{1_1} & v_{2_1} & v_{3_1} \\ v_{1_2} & v_{2_2} & v_{3_2} \\ v_{1_3} & v_{2_3} & v_{3_3} \\ v_{1_4} & v_{2_4} & v_{3_4} \\ \vdots \\ v_{1_M} & v_{2_M} & v_{3_M} \end{bmatrix} \cdot \begin{pmatrix} \hat{\vartheta}_{1} \\ \hat{\vartheta}_{2} \\ \hat{\vartheta}_{3} \end{pmatrix}$$

Approximation of vector of nodal temperatures:

Projection: V : Projection Matrix $\widehat{\vartheta}$: Temperatures in Subspace

Insert into the differential equation and multiply from the left by the transpose:

$$\begin{split} \mathbf{V}^{\mathrm{T}}\mathbf{C}_{\mathrm{th}}\mathbf{V}\,\dot{\widehat{\boldsymbol{\vartheta}}} + \mathbf{V}^{\mathrm{T}}\mathbf{K}_{\mathrm{th}}\mathbf{V}\widehat{\boldsymbol{\vartheta}} &= \mathbf{V}^{\mathrm{T}}\mathbf{Q}\\ \widehat{\mathbf{C}}_{\mathrm{th}}\dot{\widehat{\boldsymbol{\vartheta}}} + \ \widehat{\mathbf{K}}_{\mathrm{th}}\widehat{\boldsymbol{\vartheta}} &= \mathbf{V}^{\mathrm{T}}\mathbf{Q} \end{split}$$

© CADFEM

• Bring reduced model to state space format:

$$\hat{\boldsymbol{\vartheta}} = -\hat{\mathbf{C}}_{\text{th}}^{-1} \, \widehat{\mathbf{K}}_{\text{th}} \, \widehat{\boldsymbol{\vartheta}} + \hat{\mathbf{C}}_{\text{th}}^{-1} \mathbf{V}^{\text{T}} \mathbf{Q} \boldsymbol{\vartheta} = \mathbf{V} \, \widehat{\boldsymbol{\vartheta}}$$

Connect MOSFET with thermal ROM

MOSFETs with thermal ports

- MOSFETs with thermal ports
- Connected to thermal ROM
- FETs as heat generation ports
- Package conduction w/o thermal interaction

Field interaction on system level?

- System level simulation:
- · Interaction of components via ports or terminals
- Causal modeling: Control theory → No retroactive effect on previous block → signal flow
- Conservative modeling: Like spice models → bi-directional exchange of physical quantities (current + voltage or temperature + heat) → action = reaction
- No matter of conservative or causal modeling: Exchange only of *scalar* quantities (averaged, integrated, local,...)
- electro-thermal interaction happens distributed across the entire domain → how to bring this to system level?

What exactly happens on field level?

- Non uniform current distribution in the PCB
- Temperature dependent ohmic resistance
- non uniform power distribution
 distributed heat generation
 - → distributed temperature
 - \rightarrow distributed change in ohmic resistance
- Nonlinear distributed coupling:

 $\mathbf{q} = \rho_0 (1 + \alpha \vartheta) \cdot \mathbf{j} \circ \mathbf{j}$

• Or in just one "location":

 $q=\rho_0(1+\alpha T)\cdot j^2$

 \rightarrow Due to nonlinear behaviour no reduction in common step possible

Again: Projection!

 $\mathbf{u}(x,t) = \sum_{i} c_{i}(t) \cdot \mathbf{u}_{i}(x)$

- Idea:
- Combine current density from MODES
- \rightarrow What are modes?
- Modes are "patterns"
- Remain constant over time → just find them once
- Span a basis covering the same subspace

Projection Based Model Order Reduction for Multiphysical Problems | Short Course Part 1 Electric-Thermal System Model for Power Electronics

u(x,t=0.007s)

Projection: Determine coefficients

Projection:

Coefficient = Scalar product of deflection u(x,t) with basis vector u_i

 $c_{i}(t) = \langle \mathbf{u}(x,t), \mathbf{u}_{i}(x) \rangle$

- → Representation of distribution in space and time through a set of
- Basis modes (spatial resolution, constant in time) == n long vectors
- 2. Corresponding coefficients (variing with time) == n (few) scalars

```
\rightarrow Exchange coefficients on system level via terminals to represent entire field distribution
```


How to find modes?

- From several full field results
- Different numerical approaches:
 - POD
 - SVD
 - ...
 - With further knowledge

→Here: Generate modes for current densities from different load cases

Question: Are we done? Not quite yet!

Diagonal losses

 Goal: bring this equation to system level

 $\mathbf{q} = \rho_0 (1 + \alpha \vartheta) \cdot \mathbf{j} \circ \mathbf{j}$

 $Q = R_0(1 + \alpha T) \cdot I^2$

- Couple the current density modes to heat generations
- Coupling should be diagonal
- →Manipulate modes so that they are orthogonal to each other

• Orthogonality check:

• Formal check: Scalar product of current density vectors of different modes must equal zero! $\langle \mathbf{I}_i(x, y, z), \mathbf{I}_j(x, y, z) \rangle = 0$

Diagonal losses

 Goal: bring this equation to system level

 $\mathbf{q} = \rho_0 (1 + \alpha \vartheta) \cdot \mathbf{j} \circ \mathbf{j}$

 $Q = R_0(1 + \alpha T) \cdot I^2$

- Couple the current density modes to heat generations
- Coupling should be diagonal
- →Manipulate modes so that they are orthogonal to each other

• Orthogonality check:

Orthogonal current density modes

- Splitting up modes in common and differential mode
- Orthogonalization procedure: Gram-Schmidt
- Normalize modes such, that $\langle {\bf I}_i, {\bf I}_i \rangle = 1$

Orthogonal?

Orthogonal?

Electric-Thermal System Model for Power Electronics

Are we there yet?

What we got and what is missing

- Simulation for electric behaviour of devices
- Orthonormal current density modes inside the PCB
- ROM for thermal behaviour but only with scalar terminals
- No thermo-electrical interaction on field level yet
- No correlation between device currents and current density modes

Transformation matrix linking device currents to current density modes

• Split up modes

© CADFEM

• Orthogonalize them

- Construct vectors representing device currents
- Subject them to same steps as current distribution vectors
- Add them up to a transformation matrix T

Transformation matrix linking device currents to current density modes

What we got and what is missing

- Orthonormal current distribution modes inside the PCB
- Transformation matrix linking device currents and current distribution modes

- ROM for thermal behaviour but only with scalar terminals
- No thermo-electrical interaction on field level yet

pm5

Thermo-electrical field interaction on system level

• Diagonal losses for each mode:

 $U = R_0(1 + \alpha T) \cdot I$ $Q = U \cdot I = R_0(1 + \alpha T) \cdot I^2$

- Implementation as temperature dependent ohmic resistance for each current mode
- Heat generation is defined as power loss
- Conservative behaviour couples thermal to electrical domain

• Modes were normalized such, that $R_0 = 1$

1	LIBRARY IEEE;
2	use Ieee.thermal_systems.ALL;
3	USE IEEE.ELECTRICAL_SYSTEMS.ALL;
4	ENTITY ResiTemp IS
5	GENERIC (
6	alpha : REAL := 0.004);
7	PORT (
8	TERMINAL pl,ml : ELECTRICAL;
9	TERMINAL Temp, TRef : THERMAL);
10	END ENTITY ResiTemp;
1.000	
1	ARCHITECTURE behav OF ResiTemp IS
2	QUANTITY v ACROSS i THROUGH pl TC ml;
3	QUANTITY T ACROSS Heat THROUGH Temp TO TRef;
4	BEGIN
5	<pre>v==(l+alpha*(T))*i;</pre>
6	heat==-i*v;
7	END ARCHITECTURE behav;

What we got and what is missing

- Orthonormal current distribution modes inside the PCB
- Transformation matrix linking device currents and current distribution modes
- thermo-electrical interaction on field level realized through conservative modal coupling: Modal ohmic resistor with Joule heating

ROM for thermal behaviour – but only with scalar terminals

Thermal ROM with modal inputs

Two types of losses or heat inputs to the thermal ROM

- Concentrated and mostly homogeneous losses (Device losses) → already considered
- Distributed and inhomogeneous losses (Joule heating):

 $Q = R_0(1 + \alpha T) \cdot I^2 = k \cdot I^2$

 Scaling of squared current density modes

Thermal ROM with modal inputs

- ROM should behave in a conservative fashion:
- For each load vector, a corresponding output vector exists
- Heat distribution delivers corresponding temperature distribution
- By adding modal heat load vectors, we can observe the corresponding temperature distribution in the same basis
- As heat load vectors, we use scaled squared current density modes $Q = R_0(1 + \alpha T) \cdot I^2 = k \cdot I^2$

Coupling on system level

Coupling on system level

Coupling on system level

Verification w/o Skin/Proximity Effects

Coupled field solution, dt = 10 ms: Elapsed Time (sec) = 4515.0 Coupled System Solution, dt = 1 ms: Solution Process 00:00:01.575 30,000 * faster 5.00E-01 Voltage Comparison 6.00E-01 4.00E-01 Voltage Comparison 3.00E-01 4.00E-01 2.00E-01 2.00E-01 1.00E-0 0.00E+00 0.00E+00 0 0 0.00E+00 -1.00E-01 -2.00E-01 -2.00E-01 Volt1 -3.00E-01 -4.00E-01 Volt2 -4.00E-01 -I Ortho V U.VAL[0] [] -6.00E-01 -5.00E-01 - | Ortho V U.VAL[1] [] Volt1 Volt2 -I Ortho V U.VAL[0] []

Training Effort

From which Simulation emerges which Reduced Order Model?

Electrical Simulation

- Steady state simulation
- One solution per load case
- Results: Current density distributions

Post processing:

- Split into modes and orthogonalize & normalize
- Save transformation matrix: Connect device currents to current density modes

Numerical effort:

• low

Thermal Simulation

- Steady state thermal simulation setup with boundary conditions and loads
- Export system matrices
- Add load vectors for modal heat generation
- No Solution!

Post Processing:

Automatic generation of state space model

Numerical effort:

• low

Ohmic resistance

 Manual programming (once) of temperature depending resistance

Post Processing:

 None – due to normalization of the current density modes, the modal Resistance == 1

Numerical Effort:

• None

Advantages of system level simulation

- Very fast simulation compared to full field coupled simulations
- High modularity:
 - Different model types
 - Different abstraction layers
 - Easy exchange of components
 - Setup of toolboxes
- Mutual interactions of different components

\rightarrow High optimization potential

Take Aways

- System simulation for EM-thermal coupling is possible
- System simulation is fast (≈ 10000 times faster than coupled field), thus transient simulations become possible → further step towards active cycling
- Projection based model order reduction allows numerically very efficient generation of reduced order models for linear problems
- (Many) Nonlinearities can be pushed to system level

Use the method for further applications?

- YES! Definitely
- Interested? \rightarrow Stay for the second part of this short course:
 - Part II/1: Numerics: Vector spaces and subspace generation
 - Part II/2: More Applications and Theory behind conservativity of models: Modes, load vectors and couplings
- Still want to learn more?
 - Monday, Session 4, 15:40: A new method of model order reduction (MOR) for mechanical non-linear elastic-plastic problems in power electronics packaging
 - Tuesday, Session 16, 17:10: Reduced-Order Model for Solder Balls Potential of projection-based approaches for representing viscoplastic behavior