Projection Based Model Order Reduction for Multiphysical Problems

Short Course Part 1 Electric-Thermal System Model for Power Electronics

Hanna Baumgartl, Mike Feuchter, Martin Hanke
CADFEM Germany GmbH

CADFEM

Power Electronics

- Simulation solutions:
- Coupled field simulation electrical + thermal bidirectional
- but: transient effects (PWM, drive cycle,...) require many time steps
\rightarrow System model required

Source: High Power SiC and Si Module Platform for Automotive Traction Inverter, J Schuderer et al, 2019 PCIM Europe

Overview

- Electric-Thermal Simulation: Field and System
- Electric reduction: Current density modes
- Thermal reduction: Krylov reduction
- Coupling on system level
- Projection: Reduce models and couple domains
- What are modes and where do we get them from?
- Nonlinearities? Devide and Conquer! And then couple again...
- Summary: Electric-Thermal System Model
- Open Discussion

Example Half Bridge

Talk Infineon at mOre driVE 2023,

Electric Circuit Half Bridge

Embedding Parasitics Model into Circuit

Eư̌oSime CADFEM

Parasitics model (RLCMatrices)

- Conservative
- Frequency dependent
- No temperature dependence
- No heat generation

Connect MOSFET with thermal ROM

MOSFETs with thermal ports

Connect MOSFET with thermal ROM

Eurosime CADFEM

MOSFETs with thermal ports

- MOSFETs with thermal ports
- Connected to thermal ROM of PCB
- FETs as heat generation ports

Thermal ROM

Data fitting: Linear Time Invariant models (LTI)

- Time series fit from CFD or thermal field simulation (FEM)
- Input signals not necessarily a step function
- Definition of inputs (heat flow) and outputs (temperatures)
- One analysis per input
- Thermal field analysis:
- Transient temperature field analysis with fixed boundary conditions
- CFD Simulation:
- Conjugate heat transfer with constant mass flow
- Resulting model:
- state space model (linear)
- no temperature depending material properties
- Advantages:
- Spatial resolution of HTCs due to fluid flow + advection due to mass transport is considered by default
- Disadvantages:
- One transient simulation per input \rightarrow numerically very expensive

Thermal ROM

Projection onto a subspace: Model Order Reduction

- Starting Point: Thermal field simulation (FEM)
- Definition of boundary conditions
- Definition of inputs (loads = heat fluxes/ heat generations/power densities, temperatures, HTCs)
- Definition of outputs (temperatures, heat fluxes)
- Export of system matrices
- Reduction: Via Projection
- Resulting model:
- State Space model (linear)
- Consider parameters:
- Temperature depending material properties
- Variable mass flow
- Advantages:
- Very fast with high quality
- No (transient) simulation run required

Disadvantages:

- Complex HTC distributions need to be evaluated and mapped from CFD

Projection at a glance

transient equation of heat conduction :

Reshape equation to explicit state space form:

$$
\begin{gathered}
\dot{\boldsymbol{\vartheta}}=-\mathbf{C}_{\mathrm{th}}^{-1} \mathbf{K}_{\mathrm{th}} \boldsymbol{\vartheta}+\mathbf{C}_{\mathrm{th}}^{-\mathbf{1}} \mathbf{Q} \\
\boldsymbol{\vartheta}=\mathbf{I} \boldsymbol{\vartheta}
\end{gathered}
$$

$$
\begin{gathered}
\dot{x}=A x+B u \\
y=C x
\end{gathered}
$$

$\rightarrow \mathbf{A}=-\mathbf{C}_{\mathrm{th}}^{-1} \mathbf{K}_{\mathrm{th}}, \mathbf{B}=\mathbf{C}_{\mathrm{th}}^{-1} \quad$ Characterization of system dynamics
$\rightarrow \mathbf{C}=\mathbf{I} \quad$ statevector $\boldsymbol{\vartheta}==$ outputvector.

Projection at a glance

Approximation of vector of nodal temperatures:

$$
\boldsymbol{\vartheta} \approx \mathrm{V} \widehat{\boldsymbol{\vartheta}}
$$

Projection:
V : Projection Matrix
$\widehat{\boldsymbol{\vartheta}}$: Temperatures in Subspace

Projection at a glance

Approximation of vector of nodal temperatures:

$$
\boldsymbol{\vartheta} \approx \mathrm{V} \widehat{\boldsymbol{\vartheta}}
$$

Insert into the differential equation and multiply from the left by the transpose:

$$
\begin{gathered}
\mathbf{V}^{\mathrm{T}} \mathbf{C}_{\mathrm{th}} \mathbf{V} \dot{\widehat{\boldsymbol{\vartheta}}}+\mathbf{V}^{\mathrm{T}} \mathbf{K}_{\mathrm{th}} \mathbf{V} \widehat{\boldsymbol{\vartheta}}=\mathbf{V}^{\mathrm{T}} \mathbf{Q} \\
\widehat{\mathbf{C}}_{\mathrm{th}} \dot{\widehat{\boldsymbol{\vartheta}}}+\widehat{\mathbf{K}}_{\mathrm{th}} \widehat{\boldsymbol{\vartheta}}=\mathbf{V}^{\mathrm{T}} \mathbf{Q}
\end{gathered}
$$

Projection at a glance

Eữosime CADFEM

- Bring reduced model to state space format:

Connect MOSFET with thermal ROM

Eữosime CADFEM

MOSFETs with thermal ports

- MOSFETs with thermal ports
- Connected to thermal ROM
- FETs as heat generation ports
- Package conduction w/o thermal interaction

Field interaction on system level?
EuroSime CADFEM

- System level simulation:
- Interaction of components via ports or terminals
- Causal modeling: Control theory \rightarrow No retroactive effect on previous block \rightarrow signal flow
- Conservative modeling: Like spice models \rightarrow bi-directional exchange of physical quantities (current + voltage or temperature + heat $) \rightarrow$ action $=$ reaction
- No matter of conservative or causal modeling: Exchange only of scalar quantities (averaged, integrated, local,...)
- electro-thermal interaction happens distributed across the entire domain \rightarrow how to bring this to system level?

What exactly happens on field level?

Eurosime CADFEM

- Non uniform current distribution in the PCB
- Temperature dependent ohmic resistance
- non uniform power distribution \rightarrow distributed heat generation
\rightarrow distributed temperature
\rightarrow distributed change in ohmic resistance
- Nonlinear distributed coupling:

$$
\mathbf{q}=\rho_{0}(1+\alpha \boldsymbol{\vartheta}) \cdot \mathbf{j} \circ \mathbf{j}
$$

- Or in just one "location":

$$
q=\rho_{0}(1+\alpha T) \cdot j^{2}
$$

\rightarrow Due to nonlinear behaviour no

Again: Projection!

$$
\mathbf{u}(x, t)=\sum c_{\mathrm{i}}(t) \cdot \mathbf{u}_{\mathrm{i}}(x)
$$

- Idea:
- Combine current density from MODES

$$
\mathbf{u}(x, t=0.007 \mathrm{~s})
$$

Projection: Determine coefficients

Projection:

$$
\mathbf{u}(x, t)=\sum c_{\mathrm{i}}(t) \cdot \mathbf{u}_{\mathrm{i}}(x)
$$

- Coefficient = Scalar product of deflection $\mathbf{u}(x, t)$ with basis vector \mathbf{u}_{i}

$$
c_{\mathrm{i}}(t)=\left\langle\mathbf{u}(x, t), \mathbf{u}_{\mathbf{i}}(x)\right\rangle
$$

\rightarrow Representation of distribution in space and time through a set of

1. Basis modes (spatial resolution, constant in time) $==n$ long vectors
2. Corresponding coefficients (variing with time) $==n$ (few) scalars
\rightarrow Exchange coefficients on system level via terminals to represent entire field distribution

$$
\mathbf{u}(x, t=0.007 \mathrm{~s})
$$

$$
=
$$

$$
+1.65 \text { * }
$$

2.16 *

How to find modes?

- From several full field results
- Different numerical approaches:
- POD
- SVD
- ...
- With further knowledge
\rightarrow Here: Generate modes for current densities from different load cases

Question: Are we done?
Not quite yet!

Diagonal losses

EuKoSime CADFEMI

- Goal: bring this equation to system level

$$
\begin{aligned}
& \mathbf{q}=\rho_{0}(1+\alpha \boldsymbol{\vartheta}) \cdot \mathbf{j} \mathbf{j} \mathbf{j} \\
& Q=R_{0}(1+\alpha T) \cdot I^{2}
\end{aligned}
$$

- Couple the current density modes to heat generations
- Coupling should be diagonal
\rightarrow Manipulate modes so that they are orthogonal to each other
- Orthogonality check:

- Formal check: Scalar product of current density vectors of different modes must equal zero!

$$
\left\langle\mathbf{I}_{\mathbf{i}}(x, y, z), \mathbf{I}_{\mathrm{j}}(x, y, z)\right\rangle=0
$$

Diagonal losses

EuKoSime CADFEMI

- Goal: bring this equation to system level

$$
\begin{aligned}
& \mathbf{q}=\rho_{0}(1+\alpha \boldsymbol{\vartheta}) \cdot \mathbf{j} \mathbf{j} \mathbf{j} \\
& Q=R_{0}(1+\alpha T) \cdot I^{2}
\end{aligned}
$$

- Couple the current density modes to heat generations
- Coupling should be diagonal
\rightarrow Manipulate modes so that they are orthogonal to each other
- Orthogonality check:

Orthogonal current density modes

- Splitting up modes in common and differential mode
- Orthogonalization procedure: GramSchmidt
- Normalize modes such, that $\left\langle\mathbf{I}_{\mathbf{i}}, \mathbf{I}_{\mathbf{i}}\right\rangle=1$

Orthogonal?

EuroSime CADFEM

Differential mode
Common mode

Circular sym. mode

Circular asym. mode

Capacitor mode

$$
\mathbf{I}_{4}=\left\{\begin{array}{l}
+ \\
- \\
+ \\
- \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right\}
$$

$$
\mathbf{I}_{5}=\left\{\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
-
\end{array}\right\}
$$

Orthogonal?

EuroSime CADFEII

Differential mode
Common mode

Circular sym. mode

Circular asym. mode

Capacitor mode

$\left\langle\mathbf{I}_{\mathbf{i}}, \mathbf{I}_{\mathbf{j}}\right\rangle$	\mathbf{I}_{1}	\mathbf{I}_{2}	\mathbf{I}_{3}	\mathbf{I}_{4}	\mathbf{I}_{5}
\mathbf{I}_{1}	1	0	0	0	0
\mathbf{I}_{2}		1	0	0	0
\mathbf{I}_{3}			1	0	0
\mathbf{I}_{4}				1	0
\mathbf{I}_{5}					1

Are we there yet?

What we got and what is missing

- Simulation for electric behaviour of devices
- Orthonormal current density modes inside the PCB
- ROM for thermal behaviour - but only with scalar terminals
- No thermo-electrical interaction on field level yet
- No correlation between device currents and current density modes

Transformation matrix linking device currents to current density modes

- Split up modes
- Orthogonalize them

- Construct vectors representing device currents
- Subject them to same steps as current distribution vectors
- Add them up to a transformation matrix \mathbf{T}

Transformation matrix linking device currents to current density modes

- Split up modes
- Orthogonalize them

What we got and what is missing

- Simulation for electric behaviour of devices
- Orthonormal current distribution modes inside the PCB
- Transformation matrix linking device currents and current distribution modes
- ROM for thermal behaviour - but only with scalar terminals
- No thermo-electrical interaction on field level yet

Thermo-electrical field interaction on system level EữoSime CADFEII

- Diagonal losses for each mode:

$$
\begin{gathered}
U=R_{0}(1+\alpha T) \cdot I \\
Q=U \cdot I=R_{0}(1+\alpha T) \cdot I^{2}
\end{gathered}
$$

- Implementation as temperature dependent ohmic resistance for each current mode
- Heat generation is defined as power loss
- Conservative behaviour couples thermal to electrical domain
- Modes were normalized such, that $\mathrm{R}_{0}=1$

CIBRARY IEEE;
use Ieee.thermal_systems.ALL;
USE IEEE.ELECTRICAL_SYSTEMS.ALL;
ENTITY ResiTemp IS GENERIC (
alpha : REAI $:=0.004$); PORT (

TERMINAL pl, ml : ELECTRICAL;
TERMINAL Temp,TRef : THERMAL);
END ENTITY ResiTemp;

```
ARCHITECTURE behav OF ResiTemp IS
    QUANTITY v ACROSS i THROUGH pl TC ml;
    QUANTITY T ACROSS Heat THROUGH Temp TC TRef;
BEGIN
    v==(1+alpha* (T))*i;
    heat==-i*v;
END ARCHITECTURE behav;
```


What we got and what is missing

- Simulation for electric behaviour of devices
- Orthonormal current distribution modes inside the PCB
- Transformation matrix linking device currents and current distribution modes
- thermo-electrical interaction on field level realized through conservative modal coupling: Modal ohmic resistor with Joule heating
- ROM for thermal behaviour - but only with scalar terminals

Thermal ROM with modal inputs

EuroSime CADFEM

Two types of losses or heat inputs to the thermal ROM

- Concentrated and mostly homogeneous losses
(Device losses) \rightarrow already considered
- Distributed and inhomogeneous losses (Joule heating):
$Q=R_{0}(1+\alpha T) \cdot I^{2}=k \cdot I^{2}$
- Scaling of squared current density modes

Thermal ROM with modal inputs

- ROM should behave in a conservative fashion:
- For each load vector, a corresponding output vector exists
- Heat distribution delivers corresponding temperature distribution
- By adding modal heat load vectors, we can observe the corresponding temperature distribution in the same basis
- As heat load vectors, we use scaled squared current density modes

$$
Q=R_{0}(1+\alpha T) \cdot I^{2}=k \cdot I^{2}
$$

Coupling on system level

Coupling on system level

Eurosime CADFEm

traf05_1

resitemp1

Coupling on system level

EuroSime CADFEm

trafo5_1

mor8_wLV1

Verification w/o Skin/Proximity Effects

Coupled field solution, dt = 10 ms : Elapsed Time (sec) =
4515.0

Coupled System Solution, dt $=1 \mathrm{~ms}$: Solution Process 00:00:01.575 30,000 * faster

Training Effort

From which Simulation emerges which Reduced Order Model?

Electrical Simulation

- Steady state simulation
- One solution per load case
- Results: Current density distributions

Post processing:

- Split into modes and orthogonalize \& normalize
- Save transformation matrix: Connect device currents to current density modes

Numerical effort:

- low

Thermal Simulation

- Steady state thermal simulation setup with boundary conditions and loads
- Export system matrices
- Add load vectors for modal heat generation
- No Solution!

Post Processing:

- Automatic generation of state space model

Numerical effort:

- low

Ohmic resistance

- Manual programming (once) of temperature depending resistance

Post Processing:

- None - due to normalization of the current density modes, the modal Resistance $==1$

Numerical Effort:

- None

- Very fast simulation compared to full field coupled simulations
- High modularity:
- Different model types
- Different abstraction layers
- Easy exchange of components
- Setup of toolboxes
- Mutual interactions of different components
\rightarrow High optimization potential

Take Aways

- System simulation for EM-thermal coupling is possible
- System simulation is fast (≈ 10000 times faster than coupled field), thus transient simulations become possible \rightarrow further step towards active cycling
- Projection based model order reduction allows numerically very efficient generation of reduced order models for linear problems
- (Many) Nonlinearities can be pushed to system level

Use the method for further applications?

EuroSime CADFEm

- YES! Definitely
- Interested? \rightarrow Stay for the second part of this short course:
- Part II/1: Numerics: Vector spaces and subspace generation
- Part II/2: More Applications and Theory behind conservativity of models: Modes, load vectors and couplings
- Still want to learn more?
- Monday, Session 4, 15:40: A new method of model order reduction (MOR) for mechanical non-linear elastic-plastic problems in power electronics packaging
- Tuesday, Session 16, 17:10: Reduced-Order Model for Solder Balls - Potential of projection-based approaches for representing viscoplastic behavior

